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§ 4. PRESQUE-PERIODICITE DES SOLUTIONS FAIBLES MINIMALES

Dans ce paragraphe relié au papier [11]1) on se restreint a un espace
de Hilbert H; on considére un opérateur linéaire fermé A4, de domaine
dense dans H, étant le générateur infinitésimal d’un groupe U (¢) de trans-
formations unitaires de H en soi-méme; donc U* (t) = [U (1)]"' = U(—1),

1 :
pour teR, et lim — [U () x—x] = Ax si et seulement si x € Z (4). On

n-0 1
sait que i4 est alors un opérateur auto-adjoint, et on voit (cf. Th. 3.1)
que pour toute solution v (¢) de I’équation v’ (t) = Av (¢) on trouve
| v (2)||> = const, # € R. On a vu aussi que si f(¢) est une fonction continue,
et si u(t) est une solution de 1’équation u’ (¢) = Au(¢) + f(¢), alors
u (¢) admet la représentation intégrale

_ t

u(t) = U@)u(0) + J U(t—o)f(o)do,teR.
0

D’aprés le §4 Ch. I de [14]2) si u (0) € 2 (A) et si (o) est continliment

différentiable, alors u (z) est une solution de 1’équation u' = Au + £

t

dans le cas général, nous disons que toute fonction U (¢) x + J U(t—o)

0
f (o) do, ou x € H et f(0) est continue dans H, est une solution faible de la

méme €équation.

Définissons maintenant, pour toute fonction continue f(¢) de R dans
H, T'ensemble Q, formé des solutions faibles u () de I’équation u’ (¢)
= Au () + f(¢), qui vérifient aussi la condition supplémentaire

sup |u()| = pu@w < .
teR

La fonctionnelle v » u(v) = sup |v(r)| est donc bien définie sur
teR

ensemble Q,, et prend des valeurs finies > 0. On a alors le

THEOREME 4.1.  Supposons que l’ensemble Q r he soit pas vide. Il existe
alors une solution faible w (t) de I’équation w' = Aw + f, et une seule,

ayant la propriété que pu(w) = inf p(v) = p*.
Ue.Qf

1) 1l s’agit d’une version « abstraite » de ce travail.
2) Ou bien par le Th. 2.2.3 de [8]. .
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Remarquons, avant de commencer la démonstration, que si Q, est un
ensemble fini, I’existence d’une solution minimale est évidente, mais non
I'unicité d’une telle solution.

Prouvons donc I'unicité des solutions minimales, en -admettant leur
existence.

Si uy(t), u,(t) étaient deux solutions minimales, on aurait u; (¢)
t

= U (t)u;(0) +J U(t—o)f(o)dg,i = 1,2,etaussip(uy) = p(u,) = u*
0
Considérons alors les fonctions

S0 = 10 = v (270

et

S0 + 0] = v (270

/

+ Jt U(t—o)f(o)do.
0

On a que

1 1
S PROEENGI B RO
et aussi
1
3 [uy (1) +uy (1)] e,
et par suite

1
pE < (E (uy (1) + uy (t)> :

On applique maintenant I'identité du parallélogramme, valable dans tout
espace de Hilbert

1 2 1 2_1 2
P e T 1]

en prenant, pour chaque ¢ fixé, h = u; (¢), k = u2 (¢). On obtient alors

%H u; (0) — u, (0) ||2 + \ [, (2) + u, (2)] l — ] uy (t)Hz + [ us (1) ]|
w(u;) = p* et donc | u: (@) ]|* < (u®)?,

Mais,
c’est-a-dire que

ug (1) + uy (1) g
2

0K

1
< (u¥)? — 1 ” ug (0) — u, (0) Hz = ji* ou ji < pu*

avec inégalité stricte, pour tout 7 € R.
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uy (1) + uy (1)
2

Par conséquent,

1
l < ji,te Retdonc u <§ (ug (t) + uy (f))>

< §i < u*, absurde, vu que on a u* < u (—2— (uq +uz)> :
N /
Démontrons maintenant [’existence d’une solution minimale, dans
le cas de tout ensemble Q, non vide.
D’aprés la définition de p* comme borne inférieure exacte de pu (v)
pour v € Q,, on trouve, pour tout ¢ > 0, une fonction u, € Q,, telle que

P p(u) < p* + e

1
Prenons donc une suite ¢, = —, et une suite (1,)7 < Q,, de fagon que
n
1
pr ) < pt 4+ -<putr+1,n=12, ..
n

t
On a alors u, (¢) = U (¢) u, (0) + J U (t—s)f(s)ds, et aussi le résultat
0
suivant

LEMME. La suite (u,(0))7 est de Cauchy dans H.

En effet, si cela ne se vérifie pas, on peut‘_trouver un nombre p > 0, et
deux suites (m,)7, (n,)7, m,, n, 2> p, telles;que on ait I'inégalité H Uy, (0)
~ Uy, (0) | = p, pour p = 1,2, ....

Nous appliquons de nouveau la régle du parallélogramme, comme plus
haut, avec 4 = Uy, (1), k = Uy, (1), pour déduire que

2

1 2
3y O =, O] +

% [t (1) + u, (1)]

1
=3 [H U, (t)”2 + ” Un,, (1) “2]

et donc aussi les inégalités

1 >
— p + 5 [ump (t) -+ u”p (t)] < 5 [:uz (ump) + lu2 (unp)]

j I 2 12
SolW e W)+
| n, n, m, m,

2(#*)2+0<£>,p—>oo.
P
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Choisissons maintenant un nombre ¢ > 0 et assez petit; pour p assez grand
on peut écrire alors

2 p2
S WD +e - = un < (W)

1
i 5 [unp (t) + u-mp (t)]

si ¢ <

2
&, teR.
4

1
On trouve donc p <§ (u,,P—l—Lt,,,P)) < p, < wp*¥, absurde, vu que

5 [unp +ump] appartient aussi a Q.

Le lemme étant démontré, soit x = lim u, (0); posons w (¢) = U (¢) x

n—oo

t
+ J U(t—s) f(s)ds.
0
Alors, |u, () —w@) | =|U@) @O0 -] =]u, 0 — x| >0 si
n — co, et donc w (¢) est limite uniforme de la suite (u, (¢))T.

Ecrivons alors u, (t) = u, (t) = w () + w(t); on a | u,(t)| <| u, (@)
—w(@) | + | w@) | et aussi u(u,) < p(w,—w) + pw).

Si n— oo, u,—v) -0, et u(u,) - p*. On en déduit 0 < pu* < u(w).
De la méme facon on trouve que u (w) << p* et le Th. 4.1 est démontré.
Dans le reste de ce paragraphe, on se propose de prouver que si w (¢) est
une solution faible minimale de I’équation w' = Aw + f, et si f(¢) est
H-presque-périodique, alors w (¢) est aussi presque-périodique. Ce résultat
sera une conséquence des théorémes suivants:

THEOREME 4.2. Soit f(t) continue et presque-périodique de R dans H
et soit w (t) une solution faible minimale, dans I’hypothése que [’ensemble € ,
n’est pas vide. Alors w(t) est faiblement presque-périodique.

THEOREME 4.3. Soit f(t) continue et presque-périodique de R dans H
et soit v (t) une solution faible de |’équation v = Av + f, qui est aussi
faiblement presque-périodique. '

Alors, I’ensemble {v (t) },.g est relativement compact, et v (t) est donc
presque-périodique. )

Signalons aussi, un corollaire simple, qui est analogue au Th. 3.2 (on
a ici un espace de Hilbert au lieu d’'un Banach, mais le groupe U (¢) ne
posséde pas nécessairement la propriété de presque-périodicité forte).
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TuEOREME 4.4. Soit f(t) continue et H-presque-périodigue, et soit
v (t) une solution faible de v' = Av + f, telle que [’ensemble { v (t) }.r
soit relativement compact dans H. Alors, v (t) est presque-périodique.

En effet, si v (¢) est une telle solution, v (¢) est bornée, donc ’ensemble
Q, n’est pas vide. D’aprés les théorémes 4.1, 4.2 et 4.3, on trouve une
solution faible w (¢) qui est presque-périodique. Alors v —w est une solution
faible de (v—w) = A (v—w), et lensemble {v (t) — w () },g est rela-
tivement compact. Mais la relation

lo@®) —w® | =] U@ @O —w©)| =] v©0) = w(0)

implique la presque-périodicité dev () — w (), comme dans le théoréme 3.1.
Par conséquent v () = v (t) — w(¢) + w(¢) est aussi presque-périodique.

,teR

On commence maintenant la démonstration du Théoréme 4.2. Soit donc
t

w(t) = U((t)w(0) +J U(t—o0)f (o) do, une solution faible minimale,
0
avec f(t) presque-périodique.
Prenons une suite arbitraire de réels (k,)7; il existe une sous-suite
(h)T telle que lim f(r+h% = g (r) existe, uniformément pour e R,

n— o0
ou g (¢) est encore presque-périodique.
Aussi, 'ensemble { w (7) },.x étant borné dans H, il existe une sous-
suite de (4)T, soit (hh)%, telle que la suite {w(hb) }9 soit faiblement conver-
gente dans H, vers un élément w*. Posons ensuite

t

w*(t) = U(t) w* +J U(t—o)g(o)do.
0
On énonce maintenant le

LEMME 4.1. La suite (w (t+hy)5 converge faiblement vers —w* (1),
uniformément sur chaque intervalle compact de R.

Démonstration. On a, pour tout a réel, I’égalité

t+a
w(t+a) = U(t—}-a)w(O)—l—J U(t+a—o)f(o)do;
0
si dans P'intégrale on effectue le changement de variable ¢ = s + a, on

déduit la relation
t

w(t+a) = U(t) U(a) w(0) +J U(t—s)f(s+a)ds.

—-a
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D’autre part, on a

w(a) = U (a) w(0) +Jw U(a—s)f(s)ds

et donc
U)w(a) = U(t) U(a) w(0) +JaU(t—S+a)f(S)ds

0
0

= U(t) U(a) w(0) +J U(t—0)f (o +a)do
et finalement h
witta) = U w@ + | U(t—s)f(s+a)ds
On peut donc écrire la formule ©
w(t+hh) = U@)w(hl) + X U(t—s)f(s+hl)ds.

v O

Le premier terme a droite converge uniformément sur chaque intervalle
compact de R, dans H-faible, vers U (¢) w*. En effet, prenons un élément
arbitraire e€ H; on a

(e, U@) w(hy) = (U(—1)e, w(hy)

qui tend donc vers (U (—1) e, w¥) = (e, U (¢) w*), pour chaque valeur fixée
de t. Maintenant, cette convergence est uniforme si o <7 < f ou — o0
< a < f < oo. En effet, I’ensemble { U(—¢)e },_,_, est compact dans H,
vu que U (—1t)e est une fonction continue. On a aussi la proposition
suivante:

PROPOSITION.  Soit une suite (x,)7 < H, telle que (y,x,) — (¥, xo)
pour tout ye H. Soit M un ensemble compact dans H. Alors,
lim (y, x,) = (y, xo) a lieu uniformément si y parcourt M.

n—> o0

Il faut donc prouver que pour tout ¢ > 0, il existe N (g), tel que

l(yaxn—x0)|<8 si n>N(e) et yed.

p

Soit yy, ..., y, dans ., tels que 4 < U S (y,, €), ce qui est possible en vue
i=1

de la compacité de .#. -

Pour tout i = 1,2,...p, on trouve N, (¢), tel que | (¥, x,—xo) | <e
si n 2> N;(¢). Soit alors N = max (N, N,, ... N,). Pour n > N, on aura
| o xa—x0) | <& Vi=1,2,..p.
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Maintenant on a aussi, V y € .4, un certain y;, tel que H Y~y ” < &.
Il en résulte donc

‘(J’>xn_xo)| < l(y_ijxn_xO)' + I(J’ja x0)| < 2¢ sup Hx ” + €

pour n > N (g); (la suite (x,)T est bornée, étant faiblement convergente).
Cela prouve la proposition.
Pour le deuxiéme terme a droite la convergence est méme forte; en fait

t

Jt U(t—s)f(s+hy)ds —J U(t—s)g(s)ds

0 0

<[ Wserny 9] as,

J U@t —s)[f(s+hy) —g(9)]ds

ce qui prouve le lemme 4.1.
Remarquons maintenant le fait suivant: on a

sup [ w(@® | =nu(w) =p* = inf p@).

teR vle
Aussi, pour tout e R et pour tout ee H, on a que (e, w* (1))
= lim (e, w(t+hy)); mais | (e, w(@+hy)) | <|e| ¥ n=12,.. donne

aussi | (e, w* (1)) | < | e u*.
Il sensuit que | w* () | < p* pour tout e R, et donc pu(w*) <
On a maintenant le

LEMME 4.2. L’égalité u (w*) = u* est valable.

Supposons en effet I'inégalité stricte u (w*) < u*.
Prenons la formule de définition de w* (¢), c’est-a-dire

t

w*(t) = U (t) w* +J U(t—o)g(o)do

0

ol g (¢) était définie comme lim £ (¢+A,), uniformément sur R. Il en résulte

n—oo
alors, comme pour toute fonction presque-périodique, 1’égalité f(¢)
= lim g (t+—h}), encore uniformément sur R.

n—oo
En extrayant encore une sous-suite 1), on trouve aussi que w* (h}) est
faiblement convergente vers un élément Z € H.

1) Et sans changer de notation.




e e e e it s e

— 106 —

On trouve ensuite, comme auparavant, la relation

lim w*(t—hl) = U(t)Z + Jt U(t—0)f(o)do = Z (1),

n—oo 0

la convergence étant toujours uniforme sur tout intervalle o <<t < f,
dans H-faible. Maintenant, Z (¢) est dans Q,, et u(Z) < pu(w*). Mais
si u(w*) < u*, on a u(Z) < p*, contredisant la définition de u*.

Cela prouve le Lemme.

On a enfin le

LemMME 4.3. La solution faible w* (t) est minimale, c’est-a-dire que

pw(w*) = inf pw).
WE.Qg

En effet, si cela n’est pas vrai, et vu que Q, n’est pas vide, on trouve
s g

(Th. 4.1), une solution minimale unique, disons w (¢). On aurait donc

w(w) < u(w#),
et

Ww(t) = U(t) w, +J U(t—s)g(s)ds .

0

En procédant comme dans le Lemme 4.2, on trouverait une suite (4,)7 et

une fonction X (¢) telles que
dans H-faible.

~ t

X() = lim w(—h,) = U(t)Z*+J U((t—s)f(s)ds,
n— oo 0

De plus on aurait u (X) < p(w) < u(w*) = u*, et Xe Q,, contradiction.

A ce point, nous pouvons passer a la

Démonstration du Théoréme 4.2. 11 suffira de prouver que la relation:
lim w(¢+h.) = w* (¢) dans H-faible, a lieu uniformément pour feR.

n—o

Sinon, il existe au moins un élément e, € H, tel que lim (e, w(t+hi,))

n—=o
= (e, w* (¢)) ne soit pas uniforme sur R.
Par conséquent, on trouve un nombre p > 0, deux suites d’entiers (n,)7,
(m,)T ou n,, m, > p, et une suite (¢,)T de nombres réels, de fagon que I’on
ait I'inégalité

(*) l(eoa W(tp +hip))— (eO7 W(tp_l—th)) | > P, vp = 17 2:
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Aprés avoir effectué encore deux extractions de sous-suites, et sans changer
nécessairement de notation, en utilisant le H-presque-périodicité de f(z),
on peut supposer qu’on a les limites

lim f(t+t,+hY) = g4 (1)

p—®©

lim f(t+t,+hh) = g5 (1),

p— oo
la convergence étant uniforme pour 7 € R.
Si ’on raisonne comme au début de la démonstration du Théoréme 4.2,
avec une autre extraction de sous-suites, on trouve que les successions
(w (t+1¢, +h! )1 et (w (t+1, +h,1,,p)°f sont faiblement convergentes, unifor-
mément sur chaque intervalle compact de R vers des fonctions

t

wf (t) = U@) wk +J U(t—o)g, (o) do

et
t

wi () = U(t) wh + J U(t—a)g, (o) do
0
ol w (1), w3 (r) sont des solutions faibles minimales dans Q,, et Q,, res-
pectivement.
D’un autre cdté, on peut prouver ’égalité g, (¢) = g, (0), o0 € R. En effet,
lim f(t+h.) existe uniformément sur R et les suites (/1 )1, (h: )1 sont

n— o

extraites de (45)7. On déduit que

sup [ f(r+h,) —f+h, )| <& si p=py(e)

1eR
ce qui implique g, () = g, (o) vu que

sup [ f(t+t,+hy) = ft+1,4+h, )| <& p=>po(e).

teR

Ensulte d’ apres unicité des solutions faibles minimales, on trouve que
T(@) =wh (1), teR, et en partlcuher pour t = 0, wi (0) = w? (0). Mais
¥ (0) = lim faible w(t, +h! ) w3 (0) = lim faible w (z, +nt ), et I’égalité

p— p—>o0

v (0) = w3 (0) est en contradiction avec I'inégalité (*).
Cela acheve la preuve du Théoréme 4.2.

Nous passons maintenant a la preuve du Théoréme 4.3.
Soit donc f(¢) une fonction continue presque-périodique de R dans H,
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et soit v (¢) une fonction de R dans H admettant pour tout ¢ réel une repré-

sentation
t

v(t) = U(t)v(0) +J U(t—0)f(o)do .

0

D’aprés I’hypothése v (¢) est aussi H-faiblement presque-périodique, et
on veut démontrer que I’ensemble { v (¢) },.g = H est relativement compact
dans H.

En effet, dans le cas contraire, on trouve un nombre o > 0 et une suite
de nombres réels { A, } T, telle que 'on ait

| v (h,) —'v(hm)H.> o pour n # m.

On peut aussi supposer, sans perdre la généralité, que ’on a

lim f(t+h) = f(1)

n— oo

uniformément par rapport a ¢ € R.

Comme dans le Lemme 4.1 on trouve la représentation

t
v(t+h,) = U(t)v(h,) +J U(t—o)f(c+h,)do.
0
Puisque la fonction v (¢) est faiblement presque-périodique, elle est bornée
et on peut encore supposer, sans Iéser la généralité que I'on a
lim (faible) v(h,) = we H.

n— o0

On déduit alors (cf. Lemme 4.1)

lim (faible) v(¢t+h,) = U({t)w +Jt U(t—a)}(o—) do

0

n — o

(cette limite a lieu uniformément pour ¢ variant dans un intervalle compact
de la droite réelle). '

Posons maintenant ;(z‘) =U@)w + Jt U (t—a)]:(a) do.

Alors, v (¢) est faiblement presque—périogique et lim faible v (¢+h,) = ;) ().

D’apreés Amerio-Prouse ([1] Ch. III, 2, IV), cette COI:V;I’ZCHCC est uniforme

sur R, ;(t) est aussi faiblement presque-périodique et on a suII{) v @) |
te

= sup |2 ].
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D’autre part, on voit que

v(t+h,) —v(t+h,) = U@)(v(h,) —v(h,))

+th U(t—o)[f(oc+h) —f(c+h,)]do

0

et par conséquent on obtient I'inégalité

loGtah) —o@+hy) | =] U@ @G — k)|

f U(t—o0) [f(o+h,) —f(6+hm)] do

0]

> |o(h) — v (h,)|

Mt

— | |fle+h,) = f(o+h,)|doc (vuque |[U(x)| =1, t1€R)
0

v

Ecrivons maintenant la loi du parallélogramme dans les espaces de Hilbert;
on trouve I’égalité

SiM= sup |v(r)
teR
1
l 5(v(t+h,,,) +v(t+h,)
Utilisons maintenant I’inégalité

| v(t+h,) —v(t+ﬁn) | = o - J’ | f(o+h,) —f(o+h,)]| do,

2 2

%(v(t+hm)—l-v(t+hn)) + %(U(Hhm)—”(”hn))

2).

1
- —2~(||v(t+hm)Hz + v+,

, on voit que

2

2 1 2
< M? — Z||v(t+hm) —v(t+h,)]|?*.

en fixant une valeur de ¢; alors pour n, m > N,, on obtient

t
o —J |f(@+h,) —f(o+h,)]| do > %f
0
on en déduit la majoration
1
|1 5 @@ +hy) + v (t+h)

12
H < M? — «*/16 si m,n>N,.

Maintenant, pour Z € H fixé, de norme unité, on a la limite

<Z, v(t+h,) + v(l‘+hn)> N

5 = (Z,v(t)) quand m,n — oo .
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On a aussi

< JM? — o?16 si m,n>N,.

7.1 h h\
( ’5(”(” m) + v+ ,,))

Donc

|(Z,‘;(t))| <./ M? — «%/16; (pour t arbitraire et | z| =

Donc

[v(t)“ </ M? — «?16, teR
et cela contredit la relation sup H v (¢) || = M établie précédemment.
teR

Cela termine la preuve du Théoréme 4.3.
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