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If G is the group SO, of rotations of S*, then H (Lg1; SO,) is a model
for C* (Lgi; SO,). It is generated by u and by an element e of degree 2

represented by
1
e(f,9) = f |
0

The only relation is eu = 0.

2. CONNECTION WITH FOLIATIONS

Let me indicate very briefly the relation with characteristic classes of flat
bundles (cf. [12]).

H* (L, G) could also be interpreted as the differentiable cohomology
of a suitable differentiable category (for more informations see [4] and [15]).

We consider on the product X X M of a smooth manifold X with M
a smooth foliation F whose leaves have the same dimension as X and cut
each fibers { x } X M transversally.

To such a foliation is naturally associated a continuous DG-algebra map

xr: C*(Ly) — Qx

where Q2 is the DG-algebra of differential forms on X. In fact there is a
bijection between such morphisms and foliations F as above.
Passing to cohomology, we get the characteristic map

H*(Ly) - H*(X; R)

If we replace the trivial bundle by a bundle E with fiber M, base space X
and structural group G, then for a foliation F on E complementary to the
fibers, we still get a morphism

xr: C*(Ly; G) —» Qy
hence a characteristic homomorphism
H*(Ly, G) > H*(X; R)

Denoting by BG the classifying space for G-bundles, we also have the
usual characteristic map H* (BG; R) - H* (X; R). This map factorizes
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through a map H* (BG; R) —» H* (L,,; G) so that we get a commutative
diagram

H*(Ly; G)
/”
H*(BG; R)
A \\ !
H*(X; R)

So it is important to compute the map H* (BG; R) » H* (L,;; G).
When G is a compact connected Lie group, then H* (BG; R) is the algebra
I (G) of invariant polynomials on the Lie algebra of G, and the map from
I(G) to C* (Ly; G) is given by a G-connexion in C* (L,,) (cf. [5]).

In the example above, namely M = S* and G = SO,, then H* (BSO,)
is a polynomial algebra in a generator of degree 2, the Euler class, which is
mapped on a non zero multiple of e.

3. THE FORMAL VECTOR FIELDS AND THE DIAGONAL COMPLEX

Given a point x on M, we can consider the Lie algebra L;; of infinite
jets at x of vector fields on M with the quotient topology. It is isomorphic
to the Lie algebra a, of formal vector fields ) v; (x) 6/0 x* in R", where the
v; (x) are formal power series in the coordinates x', ..., x".

The natural map L,, — L;; associating to a vector field its jet at x gives

a DG-algebra morphism
C*(Ly) = C* (Lay)

where C* (Lj;) is the algebra of multilinear alternate forms on L}, depending
only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the
complete determination of the cohomology H* (qa,) of the topological Lie
algebra of formal vector fields on R".

THEOREM 1. (Gelfand-Fuks [8], [9]). Let E (hy, ..., h,) be the exterior
algebra on generators h; of degree 2i—1 and let Rcy, ..., c,), be the
quotient of the polynomial algebra in generators c; of degree 2i by the
ideal of elements of degree > 2n.
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