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pretation for higher n, long sought for, is still missing (and may even not
be there!). Eckmann introduced G-finite cohomology groups (1947) and
showed their connection with the Hopf-Freudenthal theory of the ends of a
group. Eckmann’s work, and the paper of Eilenberg-Mac Lane on complexes
with operators, again emphasized the connection of cohomology groups of
groups with covering spaces. There was a systematic presentation of the
subject in the Cartan seminar of 1950/51, entitled “Cohomologie des groupes,
suite spectrale, faisceaux”. In this seminar Eilenberg first described the
cohomology groups axiomatically, and then proved their existence. Sub-
sequent exposés by Cartan emphasized the calculation of the cohomology
by free resolutions complete with an abstract version of the comparison
theorem. A decisive example of the effective use of such resolutions is the
calculation of the cohomology of a cyclic group—carried out here in
exposé 3. (I am sensitive to the advantage of using resolutions for this pur-
pose, because in 1948 I had calculated the cohomology of cyclic groups
directly from the bar resolution without the general comparison theorem—
the direct method worked but was much more cumbersome.) Subsequent
exposés made a number of applications—to the Brauer group, the Wedder-
burn theorem, the theorem of Maschke on complete reducibility of linear
representations of a finite group, and P. A. Smith’s theorem.

Further applications to pure group theory have been limited. One
small but striking one is the homology proof by Gaschutz [1966]:

THEOREM. A finite non-abelian p-group has an automorphism of p™
power order which is not an inner automorphism.

This conference in Zurich has exhibited more examples of the use of
homology in group theory.

9. SPECTRAL SEQUENCES

The results stimulated by group cohomology were not confined just to
group theory. For example, the problem of computing the cohomology
groups H" (G, A) for the case when G itself is a group extension (say,
cyclic by cyclic) immediately leads to the study of a spectral sequence.
Specifically, if

1o K->G->0Q0 -1 (D)

is a short exact sequence of (multiplicative) groups and 4 is a left G module
there is a spectral sequence E/? with




o
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Ef' = H"(Q, H'(K, M)) (2)

converging to the graded group associated with a filtration of the coho-
mology E**1 (G, M). In (2), the cohomology H? (K, M) of the subgroup K
is suitably interpreted as a Q-module, so that the outside cohomology 1s
defined. The essential portions of such a spectral sequence were discovered
by R. Lyndon in his 1946 Harvard thesis, at about the same time that Leray
was formulating the general notion of a spectral sequence. Lyndon did use
his formulation for computation. Some years later [1953], Hochschild and
Serre formulated a spectral sequence like that of (2) in the conventional
language, so such a sequence is usually called a Hochschild-Serre spectral
sequence. (There are actually several different constructions of such a
sequence, and some residual uncertainty as to whether these constructions
all yield the same spectral sequence). The essential observation is that
computing cohomology or homology in a fiber situation like that of (1)
inevitably leads to the spectral sequence technology—whether the fiber
situation is group theoretic, as with the exact sequence (1), or a fiber space,
as in the case so effectively exploited by Serre in topology.

10. TRANSFER

The operation of transfer was well known in group theory, beginning
with Burnside’s work on monomial representations. If H is a subgroup of
index n in G, the transfer from G to H is a homomorphism.

t:G/[G,G] > H/[H, H] (1)

between the factor-commutator groups. To define it, choose representatives
Xy, ..., X, of the right cosets of H in G, so that G = U Hx; and write p (x)
for the representative x; of the coset Hx. Then ¢ is ’

t(g9) = 1__[1 (xi9) [p(xg)]™! (2)
This map ¢ is independent of the choice of the set of representatives x, ..., x,.

Since the factor comn‘lvutator group G/[G, G] in (1) is simply the 1-
dimensional homolqu group H, (G, Z), the transfer can be regarded as a
map in homology.

t:H,(G,Z) »> H,(H, Z)

In 1953 Eckmann extended this map to apply in all dimensions, both in
homology and cohomology. Using the standard homogeneous complexes
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