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for some arbitrarily large z = re’® on E. Here A, is an absolute but pre-
sumably very large constant. I had conjectured that the result holds for
any A, > 1. Soon afterwards Beurling showed Kjellberg in a conversation
that (8) holds for any 4, > 3. Beurling’s argument is as follows.

We write

B(r) = log" M(r) = max {0, log M(r)}, B(z) = B(|zl),
and suppose that for some K > 1, we have
9) log [f(2)| < — KB(2),

on a Jordan curve I' joining z = 0, z, = Re™. Then we deduce that

(10) log |f(reé?) | < — B(r), 0<r<R.

To see this we suppose that S: [r,, r,] is a maximal interval such that re®
does not lie on I', for r; < r < r,. Let y be the arc of I' with end points
r.e®, rye', let D be the domain bounded by y and S, D* the reflexion
of Din Sand 4 = D u S u D*. In 4 we consider the function

u(z) =log [f(2)| + log |f(z%) | + (K—1)B(2)

where z* is the reflexion of z in S. Clearly u (z) is subharmonic in 4 and,
for z on the boundary of 4, either z or z* lies on I'. Thus

u(z) <O
in 4 and in particular on S. We deduce that
2l0g [f(ré) | < —(K=DB(r), r <r<r

and this yields (10). Hence if K > 3, we deduce that f is constant from
Beurling’s theorem.

Recalling his earlier conversation with Beurling, Kjellberg went on to
prove 18 months ago that (8) holds for any 4, > 1 at least when f has finite
order and I managed to extend the result to the case of infinite order.
Our joint paper will be published in the Turan memorial volume. I should
like to describe briefly the idea behind this proof.

3. AN EXTENDED REFLEXION PRINCIPLE

Let us return to the above reflexion argument. We assume now that (9)
holds on some curve I" going from 0 to co, where K > 1. Then the reflexion
principle shows that




L
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— 219 —

(11) log [f(2)] < — B (2)
on any ray joining the origin to some point on I'. Kjellberg extended this to
prove the following |

LeMMA. If f has lower order n < oo. Then (11) holds in some sector
of opening at least w/u.

From this he was able to obtain a contradiction if K > 1. To prove the
Lemma we let 0, 0, be the lower and upper limits of arg zas z — oo on I'.
Then the above argument shows that (11) holds for 0, < argz < 0,.
Thus is 6, — 6, > n/u, the Lemma is proved.

Suppose now that 6, — 0, < n/u. We may assume that u > 1, since
otherwise our conclusion follows from (5) in which A can be replaced by u
according to a Theorem of Kjellberg [7]. We choose a sequence R, which
tends to oo with » and is such that

(12) log B(R,) <(pu+o(1)log R,.

We now define quantities o, a, as follows. For any fixed ¢, < 6, and
sufficiently large R, we define %, (R, ¢,) to be the largest number such
that the arc

¢, < arg z < ¢y +h(R,¢y), |z| =R

does not meet I'. Clearly hy <0, + o (1) — ¢, for large R. Similarly,
for ¢, > 0,, we define &, (R, ¢,) to be the largest number such that the
arc

¢, —h,(R,¢,) < argz < ¢,, |z| =R

does not meet I'. Then « is defined to be the greatest lower bound of all
¢, < 0, such that, for a fixed large R,, we have

, Kn dt
lim | n et < X
n— o0 log Rn Ry t 2,“

If there are no such numbers ¢;, we define o, = 0,. Also «, is defined
similarly as the least upper bound of all ¢, > 0, such that

Rn dt T
J hz(ta(f)z)—t“ <.

(13) lim
R 2u

e log R,

If there are no such ¢, we define «, = 0,.
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Suppose now that ¢, < oy, ¢, > «,. Then we deduce that for a ﬁxed
large R, and all sufficiently large n o

R Rn
(P2 =) log—R—n~ =J (P2 — 1)— J {hy(t, ¢ 1) + hy (1, §b2)}‘*

= <ZC_ +0(1)) log R,.
u

Thus ¢, — ¢ > n/u, and hence o, — o; > 7/u.
On the other hand we can show that (11) holds for 0 < | z| < o, ocl
<Larg z < ®,.

To see this we choose ¢, such that o; < ¢ < o, and assume that r
does not meet the ray arg z = ¢ for arbitrarily large z, since otherwise the
conclusion follows from (10). In particular (11) holds for 0, < ¢ < 0,
and hence by continuity also for ¢ = 0; or 8,. Thus we may assume that
either a; < ¢ < 04 or 0, < ¢ < «,. Suppose e.g. that the latter inequality
holds, so that in particular a, > 0,. Let z, = Re'® be the last intersection
of argz = ¢ with I'. Let D be the domain bounded by the arc I', of I
from z, to oo and by the segment S:z = te®, R, < t < 0.

Let D* be the reflexion of D in S and set 4 = D u S U D*,
We consider

u(z) =log [f(2)| + log | f(z*) | + (K—1)B(z2)
in 4, where z* denotes the reflexion of z in S, and proceed to show that
(14) u(z) <0immd4d.

By our construction (14) holds on the finite boundary I'y u I'§ of 4.
To deal with points at co we combine (12) and (13).

We choose a large n and define w, (z) to be the harmonic measure of the
circle | z| = R,, with respect to the subdomain 4, of 4 bounded by |z |
= R, I'y, I't and containing the part R, < t < R, of the segment S.
If z is a fixed point of and we let n tend to oo, then standard estimates
yield 1)

Rn

—— +0(1)}, asn — oo .
Ro+1 2hZ (t: ¢)

(15 w,(2) < exp { — nj

1) We may map A, onto a half strlp and then apply Ahlfors’ distortion theorem in
the form given in [3].
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Also Schwarz’s inequality yields

[ I R )
Ror1 ot S Rerr tha (.4) T Ro+1/f ~

Ry dt Rn N2 Rn dt
[t B P o
Ro+1 Lh3 (1, §) Ry +1 Ro+1 t

2pu+ 29
>__—____

T

1.e.

log R,

for all large n, where & is a positive constant, in view of (13). Thus (15)
yields |

(16) - w,(z) = O(R,”" 7%, asn—> 0.
Also since u (z) < (K+1) B(R,) on | z | = R,, we deduce finally that
Cu() < (K+DBR)w,(2) -

in 4, and now (12) and (16) yield (14) for any point in 4. In particular for
z on S, we deduce (11) as required. This proves the Lemma.

4. CONCLUSIONS

It is not difficult to obtain a contradiction from the above Lemma. We
may assume without loss of generality that the angle is given by S': | arg z |

< ~2£ . Since f(z) is bounded in S, we deduce that log If (2) | is bounded
U

above in S by the Poisson integral of the boundary values on the arms
argz = F 7/(2u). This leads, for K > 1, to

“B()dt
4 0] < -

tu+1 2 2#’

(17) log [f(re®)| < — A(u)(K—-l)r"J

¥

0<r< oo,

where the constant 4 (1) depends only on u.

Given any constant C > 1, we can, since f has lower oirder u find a
sequence r, tending to infinity with » and such that

1 t\# .
B(t)>£<> B(r), r,<t<Cr,
r

n
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