All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Band 24 (1978)
Heading Page
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Titelseiten
PDF
Inhaltsverzeichnis
PDF
Titelseiten
PDF
Register
PDF
Titelseiten
PDF
Artikel: ORIGINS OF THE COHOMOLOGY OF GROUPS
PDF
1
Kapitel: 1. The Historical Questions
PDF
1
Kapitel: 2. Fundamental Group and 2nd Betti Group
PDF
1
Kapitel: 3. Homology and Cohomology of Groups
PDF
4
Kapitel: 4. The Background in Abstract Algebra
PDF
8
Kapitel: 5. The Background in Class Field Theory
PDF
9
Kapitel: 6. Betti Numbers or Homology Groups
PDF
11
Kapitel: 7. The Background in Homotopy
PDF
13
Kapitel: 8. The Cohomology of Groups
PDF
13
Kapitel: 9. Spectral Sequences
PDF
14
Kapitel: 10. Transfer
PDF
15
Kapitel: 11. Class Field Theory
PDF
17
Kapitel: 12. Homological Algebra
PDF
17
Kapitel: 13. Functors and Categories
PDF
20
Kapitel: 14. Duality
PDF
21
Kapitel: 15. Cohomology of Algebraic Systems
PDF
24
Kapitel: 16. Some Historical Questions.
PDF
25
Bibliographie
PDF
26
Artikel: ON CAYLEY'S EXPLICIT SOLUTION TO PONCELET'S PORISM
PDF
31
Kapitel: 1. Points of finite order on elliptic curves
PDF
33
Kapitel: 2. Application to the Poncelet problem
PDF
38
Artikel: COINCIDENCE-FIXED-POINT INDEX
PDF
41
Kapitel: Introduction
PDF
41
Kapitel: § 1. The coincidence-fixed-point (c.f.p.) index
PDF
42
Kapitel: § 2. The Lefschetz trace formula for the c.f.p. index
PDF
45
Kapitel: § 3. Applications, Problems.
PDF
49
Bibliographie
PDF
53
Article: ON A FUNCTIONAL EQUATION RELATING TO THE BRAUER-RADEMACHER IDENTITY
PDF
55
Bibliography
PDF
61
Article: ÜBERLAGERUNGEN DER PROJEKTIVEN EBENE UND HILBERTSCHE MODULFLÄCHEN
PDF
63
Bibliography
PDF
78
Article: MAPS BETWEEN CLASSIFYING SPACES
PDF
79
Bibliography
PDF
85
Article: SOLUTIONS PRESQUE-PÉRIODIQUES DES ÉQUATIONS DIFFÉRENTIELLES ABSTRAITES
PDF
87
Chapter: Introduction
PDF
87
Chapter: §1. Solution presque-périodiques de l'équation $\left( \frac{d}{dt}-A \right)u = 0$
PDF
88
Chapter: §2. Presque-périodicité des solutions bornées
PDF
89
Chapter: §3. Presque-périodicité des solutions a trajectoire relativement compacte
PDF
93
Chapter: §4. Presque-périodicité des solutions faibles minimales
PDF
99
Bibliography
PDF
110
Article: SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS
PDF
111
Chapter: §1. Présentations dynamiques
PDF
111
Chapter: §2. Groupes de nœuds
PDF
114
Chapter: §3. Exemples
PDF
116
Bibliography
PDF
123
Article: DILATATIONEN VON ABELSCHEN GRUPPEN
PDF
125
Chapter: I. KONGRUENZKLASSENGEOMETRIEN UND GRUPPENGEOMETRIEN
PDF
127
Chapter: II. Dilatationen von Gruppen
PDF
130
Chapter: III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN
PDF
137
Article: ON THE GELFAND-FUKS COHOMOLOGY
PDF
143
Chapter: 1. Definitions
PDF
143
Chapter: 2. Connection with foliations
PDF
145
Chapter: 3. The formal vector fields and the diagonal complex
PDF
146
Chapter: 4. Main theorem
PDF
148
Chapter: 5. Construction of an algebraic model for the space OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).
PDF
149
Chapter: 6. Sketch of the proof of the main theorem and applications
PDF
152
Chapter: 7. Example of a computation
PDF
153
Chapter: 8. Case of a manifold with boundary
PDF
155
Chapter: 9. Construction of a model for $C^\star (L_{M,N})$
PDF
156
Chapter: 10. SOME OTHER PROBLEMS
PDF
158
Bibliography
PDF
159
Article: THE LEVI PROBLEM AND PSEUDO-CONVEX DOMAINS: A SURVEY
PDF
161
Chapter: §1. The Levi Problem
PDF
161
Chapter: §2. Pseudo-convex Domains
PDF
167
Bibliography
PDF
171
Article: REMARKS ON THE UNIVERS AL TEICHMÜLLER SPACE
PDF
173
Chapter: 1. Introduction
PDF
173
Chapter: 2. Reformulations in the plane
PDF
174
Chapter: 3. Spirals
PDF
175
Chapter: 4. OUTLINE OF THE PROOF OF THEOREM 5
PDF
177
Chapter: 5. CONCLUDING REMARKS
PDF
177
Bibliography
PDF
178
Article: ALGEBRAIC ASPECTS OF THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS
PDF
179
Chapter: 1. Dimension of D-Modules
PDF
179
Chapter: 2. General constructions on D and E-Modules
PDF
182
Chapter: 3. FURTHER RESULTS ON HOLONOMIC SYSTEMS
PDF
186
Bibliography
PDF
187
Article: EINIGE VERZERRUNGSAUSSAGEN BEI QUASIKONFORMEN ABBILDUNGEN ENDLICH VIELFACH ZUSAMMENHÄNGENDER GEBIETE
PDF
189
Bibliography
PDF
201
Article: UNIVALENT FUNCTIONS, SCHWARZIAN DERIVATIVES AND QUASICONFORMAL MAPPINGS
PDF
203
Chapter: 1. Introduction
PDF
203
Chapter: 2. Quasiconformal mappings
PDF
203
Chapter: 3. Quasicircles
PDF
205
Chapter: 4. Deviation of a domain from a disc
PDF
206
Chapter: 5. SCHWARZIAN DERIVATIVE AND UNIVALENCE
PDF
210
Bibliography
PDF
213
Article: HOW QUICKLY CAN AN ENTIRE FUNCTION TEND TO ZERO ALONG A CURVE ?
PDF
215
Chapter: 1. Introduction
PDF
215
Chapter: 2. The case when E is a curve
PDF
217
Chapter: 3. An extended reflexion principle
PDF
218
Chapter: 4. Conclusions
PDF
221
Bibliography
PDF
223
Article: SINGULAR INTEGRAL EQUATION CONNECTED WITH QUASICONFORMAL MAPPINGS IN SPACE
PDF
225
Chapter: 1. Introduction
PDF
225
Chapter: 2. Definitions and notations
PDF
225
Chapter: 3. Invariance properties
PDF
226
Chapter: 4. NON-EUCLIDEAN MOTIONS
PDF
228
Chapter: 5. FUNDAMENTAL SOLUTIONS
PDF
229
Chapter: 6. POTENTIALS
PDF
231
Chapter: 7. Computation of SIv
PDF
233
Chapter: 8. Automorphic functions and beltrami differentials
PDF
235
Bibliography
PDF
235
Article: INVARIANTS OF FINITE REFLECTION GROUPS
PDF
237
Chapter: Introduction
PDF
237
Chapter: CHAPTER I GENERAL THEORY
PDF
239
Chapter: 1. The Main Theorem of Invariant Theory
PDF
239
Chapter: 2. Molien's Formula
PDF
243
Chapter: CHAPTER II INVARIANT THEORETIC CHARACTERIZATION OF FINITE REFLECTION GROUPS
PDF
245
Chapter: 1. Chevalley's Theorem
PDF
245
Chapter: 2. The Theorem of Shephard and Todd
PDF
248
Chapter: 3. A Formula for $\frac{\delta \left(I_1,\ldots,I_n \right)}{\delta \left(x_1,\ldots,x_n\right)}$
PDF
253
Chapter: 4. Decomposition of Finite Reflection Groups
PDF
254
Chapter: CHAPTER III THE DEGREES OF THE BASIC INVARIANTS
PDF
256
Chapter: 1. The Classification of the Finite Real Reflection Groups
PDF
257
Chapter: 2. The Computation of the Degrees for Real Finite Reflection Groups
PDF
262
Chapter: 3. Tabulation of the Degrees
PDF
271
Chapter: 4. Solomon's Theorem
PDF
274
Chapter: CHAPTER IV PARTIAL DIFFERENTIAL EQUATIONS AND MEAN VALUE PROPERTIES
PDF
280
Chapter: 1. Invariant partial differential equations
PDF
280
Chapter: 2. Mean Value Properties
PDF
283
Bibliography
PDF
292
Article: CARTIER DUALITY AND FORMAL GROUPS OVER Z
PDF
293
Chapter: §1. Introduction
PDF
293
Chapter: §2. Groups
PDF
296
Chapter: §3. Formal Groups
PDF
300
Bibliography
PDF
303
Article: MÉTRIQUES KÄHLÉRIENNES ET SURFACES MINIMALES
PDF
305
Chapter: §0. Introduction
PDF
305
Chapter: §1. Rappels et notation.
PDF
305
Chapter: §2. MÉTRIQUE HERMITIENNE ET SOUS-VARIÉTÉS MINIMALES.
PDF
307
Bibliography
PDF
310
Article: SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY
PDF
311
Abstract: SUMMARY
PDF
311
Chapter: 1. Hilbert's zero theorem: a particular case
PDF
311
Chapter: 2. Proof of Hilbert's zero theorem
PDF
312
Chapter: 3. Elimination theory
PDF
314
Chapter: 4. Proof of theorem D
PDF
315
Chapter: 5. Application to schemes
PDF
316
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
41
Back matter
PDF
Back matter
PDF