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At this point, k is a field (the quotient field of A0/^) and R is a graded
algebra over the field k, so all assumptions of theorem B are fulfilled.
Moreover let s the composition of the natural maps

A -> A' -> A" -> R

In degree 0, s0 is nothing else than the natural map from A0 into k with
kernel Since cp has the same kernel *J3, it factors through s0, making K
an algebraically closed extension of k.

We quote now theorem B. There exists a k-linear ring homomorphism

/ : R -» K such that f(R+) # 0. The composite map W f s has all the

required properties.

5. Application to schemes

We keep the notation of theorem D. Recall that the spectrum S

Spec (A0) of A0 is the set of all prime ideals in A0 ; the projective spectrum
X Proj (A) of A is the set of all graded prime ideals in A, which do not
contain the ideal A+ © Ad. We have a natural map n : X -» S

d;^_i

associating to every graded prime ideal in A the prime ideal ^3 n A0
in A0.

Moreover S and X are endowed with their respective Zariski topologies.
A set F in S (resp. X) is closed if and only if there exists an ideal 31 in A0
(resp. A) such that F is the set of ideals ^3 of S (resp. X) containing 31.

It is obvious that n is continuous.
The following theorem is Grothendieck's version of the elimination

theorem. Using his language, it is the main step in the proof that X Proj (A)
is a proper scheme over S Spec (A0).

Theorem E. The map n : X -» S is closed, that is the image of a closed

set is closed.

Let F a X be closed and let 31 be an ideal in A such that F consists

of the graded prime ideals ^3 of X containing 31. Replacing if necessary
31 by the ideal generated by the homogeneous components of its elements,

we may and shall assume that 31 is a graded ideal. Let 23 be the set of
elements a in A0 such that a. Ad a 31 for large d, and let G be the set of
prime ideals in A0 containing 23. It is obvious that n maps i^into G.

Let ^30 be a prime ideal in G, hence =3 3I0 (where 3I0 31 n A0).
Denote by k the quotient field of A0/S$0 and by K an algebraically closed
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overfield of k. Let cp be the natural composite map A0/^{0 -> ^o/s^o k
-» K. We are now in a position to apply theorem D to the graded ring A/Si(,

and we get a ring homomorphism W : A/$1 -> K extending (p and such that
W ((/1++ / 0. Let S$d (for d > 1) be the set of elements a in Ad

such that lF (a A- $1) 0. Then ^ © <\sd is a graded prime ideal in A

containing 91 with ^ A+ and ^ n A0 s.po. That is, s]3 belongs to F
and 7i maps onto ^0.
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