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I, = (0) and J, = J and define inductively r,, I, and 3, as follows. For
d >0, let r;,; be equal to the maximum of the dimensions of 7 n R,
for I running over J,, let 7, , be any ideal in J, such that dim (7, ;" R, ;)
= ry.q and let ;. be the set of ideals 7 in J, such that In R,,, =
I;11 N Ry Then the ideal @ (I;,nR,) is a maximal element in J,
as it is easily checked. =1

3. ELIMINATION THEORY

The main theorem of elimination theory may be formulated as follows.
Let P,,...,P, be polynomials in k [X,, Xy, ..., X;; Yy, ..., ¥, ] with P;
homogeneous of degree d; in the variables X, X, ..., X, alone, i.e. of the
form

P; = Y XX . X fu; (Yys ey X)
a0+t ap=d;
where the f, ’s are polynomials in k [Y3, ..., Y,].

Denote by J the ideal in k [X,, Xy, ..., X,; Y3, ..., ¥,,] generated by
Py, ..., P, and by U the ideal of polynomials f in k [Y, ..., Y,] with the
following property (the so-called Hurwitz’ Trigheitsformen):

(E) There exists an integer N >1 such that f X3, X7, ...f XY all
belong to J.
As usual we denote by P” (K) the n-dimensional projective space over K.

THEOREM C. Let V be the subset of P"(K) X K™ consisting of the
pairs (x,y) with x = (Xg : Xy . 1 X,) and y = (Yy, eees Y) Such that
P (Xgy Xgs eves X3 Vis oos V) = 0 for 1 <j <r. Let W be the subset of
K™ consisting of the vectors y such that Q (y) = 0 for every Q in 4.
Then the projection of V < P"(K) X K™ onto the second factor K™ is
equal to W.

To reformulate theorem C, let us consider the ring
B =k[Xy X{y.o, X5 Yy, oy Y}

together with its subring B, = k [Y4, ..., Y,,]. Denote by B, the By,-module
generated in B by the monomials of degree d in X,, Xy, ..., X,. Then B
= @ B,is a graded ring with J a graded ideal. Define the graded ring

d>=0

A = B/J with A, = B,/(B,nJ). We have the following properties:
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(1) As aring, A is generated by Ay U A;.

(ii) For any nonnegative integer d, A, is a finitely generated module over A.

Furthermore, let S be the ideal in A4, consisting of all &’s such that a4,
= 0 for all sufficiently large d’s, i.e. the union of the annihilators of the
Ay-modules Ay, A, Ay, ... .

THEOREM D. Let A = @ A, be a graded commutative ring obeying
d=0

hypotheses (i) and (ii) above. Let K be an algébraically closed field and
¢ : Ay — K be a ring homomorphism. In order that ¢ extend to a ring
homomorphism ¥ : A — K which does not annihilate the ideal A™ = @ A,

a1
in A, it is necessary and sufficient that ¢ annihilate the ideal & defined
above.

We leave to the reader the simple proof of the necessity in theorem D
as well as the derivation of theorem C from theorem D.

4. PROOF OF THEOREM D

Let B be the kernel of ¢, a prime ideal in 4,. Assume & < . We
subject the ring A4 to a number of transformations. At each step, the pro-
perties (i) and (i1) enunciated before the statement of theorem D will be
preserved, as well as property A, # 0 for every d > 0. We shall mention
what has been achieved after each step.

a) Factor A through the following graded ideal J: an element « in
A belongs to J if and only if there exists an element s in A, such s ¢ B
and sa = 0. For every d > 0, the annihilator S, of the 4,-module A, is
contained in © hence in P and this implies J N 4, # A,. Put 4" = A/J,
P = (P+J)/Jand T = Ay-P'. Then any element in X is regular in A’

b) Enlarge 4" by replacing it by the subring 4” of the total quotient ring
of A" consisting of the fractions with denominators in X. Let A, be the set
of fractions with numerator in 4; and denominator in X; then A”
= @ Ay Then Aq is a local ring with maximal ideal B’ = B . A

d>0

¢) Factor A" through the graded ideal P”. A4”. Since A4, is a finitely
generated module over the local ring A, one gets A # V"4, by Naka-
yama’s lemma. Put &k = A;\'B", and R = A"/P"A4".
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