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8. CASE OF A MANIFOLD WITH BOUNDARY

More generally we consider a closed manifold N of dimension p in a
manifold M of dimension n. L, y will denote the subalgebra of L, of
those vector fields on M which are tangent to N. An interesting particular
case is when N is the boundary 0M of M. For M compact, Ly, s, can be
considered as the Lie algebra of the group of diffeomorphisms of M.

First we consider the formal vector fields. Let a, , be the Lie subalgebra
of formal vector fields on R" which are tangent to R? identified to a linear
subspace of R". Again C* (a, ,) denotes the DG-algebra of those multi-
linear alternate forms on a, , depending only on finite order jets.

We describe a finite dimensional model for C* (a, ,). Let E (hi, ..., h
h"y, ..., h",.,) be the exterior algebra in generators ’'; and 2”; of degree 2i— 1.
Let R [cq, .o Cpy €1y . be the quotient of the polynomlal algebra
in generators c; and ¢;” of degree 2/ by the ideal of elements of degree > 2p.

Define

s 11 p]2p

WU, , =E(,...h, by, ...,y )
® R [cisonns Cps c'll e cn_pjzp
as the DG-algebra with differential defined by
dh;’ = ¢/, dh" =¢,", de¢;/ =0, d¢,” = 0.

i

This is a model for the space F, , obtained by restricting the universal
principal (U, x U,_)-bundle over the 2p-skeleton of its basis represented
by a product of Grassmanians with the usual even dimensional cell decom-
position.

It n < 2p, WU, , is also a model for a wedge of spheres. When n > 2p,

it is a model for the product of the wedge of spheres corresponding to
WUpr by S2p+1 % S‘Zp—}—?) X SZn—Zp—l.

THEOREM 1 (Koszul [11]). There is a natural morphism
wu, , - C*(a,,,)

inducing an isomorphism in cohomology.

As a consequence, H* (ap,,) = O0for 0 < i <2pandi>p?+ (n—p)?
+ 2p. When n < 2p, the multiplication is trivial.
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To have a model for the homomorphism induced by the inclusion of
a,, in a,, we have the commutative diagramm

Cc* (an) - C* (an,p)
4
WU, « wu,,

where the second horizontal map sends 4; on A, + A" and c¢; on ¢, + ¢,
(by convention, 4;" or &,” is zero for i > p or i > n-p, idem for ¢;,” and ¢;").
Note that the natural map of theorem 1 should map the ¢;” s and ¢;” not
on the usual Chern classes defined by the connection but on the polynomials
in Chern classes corresponding to ). xi, the Chern classes being the ele-
mentary symmetric functions in the formal variables x,. These horizontal
maps are also models for an inclusion of F, , in F,.

We consider again the bundle E over M associated to the tangent
bundle of M and with fiber F,. Its restriction above N contains a subbundle
E' with fiber F, ,.

THEOREM. C* (Ly,y) is a model for the space I'y y of continuous

sections of the bundle E whose restriction to N have values in the sub-
bundle E'.

To make explicit computations, we construct a model for I'y, y, which
will be finite dimensional in each degree when M and N have finite dimen-
sional models. This is the purpose of the next paragraph.

9. CONSTRUCTION OF A MODEL FOR C* (Ly,n)

Consider the commutative diagramm of Lie algebras

LM,N ~ Ly

14 14
LM,N e LM

where L'y, and L’y y are the quotients of L, and L), y by the subalgebra
LY, of vector fields on M whose infinite jet vanish at points of N.
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