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CHAPTER 1V

PARTIAL DIFFERENTIAL EQUATIONS
AND MEAN VALUE PROPERTIES

1. INVARIANT PARTIAL DIFFERENTIAL EQUATIONS

We study in the present chapter a certain system of partial differential
equations invariant under a finite reflection group G and related mean value
properties. We assume throughout that the underlying field k is real (this
permits us to introduce the methods of analysis) and that G is orthogonal,
which can always be achieved after a linear change of variables. We rely on
the invariant theory of the previous chapters to establish the forthcoming
results. Conversely, we shall see that the problems studied in this chapter
lead to a natural set of basic invariants for G. In the sequel, let R denote
the ring of polynomials k [x,, ..., x,]. For any polynomial p (x), p (0)
denotes the partial differential operator obtained by replacing
x = (xq, ..., X,) by the symbol

0 0
0 =0, =—, ..., .
0x4 0x,

We shall use the following result.

THEOREM 4.1 (Fischer [9]). Let a be a homogeneous ideal of R (l.e.
if pea, then each homogeneous block of pea). Let S be the space of
polynomial solutions of a(0)f = 0,aea. Then a, S, R are vector spaces
over k and R = a ® S.

Proof. Let R,, = vector space of homogeneous polynomials of degree m,
0o<m< o, a,=R,na S,=R,nS. We have R= > @ R,
m=0

with similar expressions for a and S. For any two polynomials P, Q, define
(P, Q) = P(d) Q| =0. It is readily verified that (P, Q) is an inner product
on R with R, 1 R, whenever m # p. We show that q,, S, are orthogonal
complements in R,,. Hence R,, = a,, @ S,,,0 <m < oo,andsoR =a @ S.
QeS,Peqa,=PQ)Q(x) = 0= (P, Q) =0.Hence S, € ay,. Let Q € aj.
We show that Q € S,,. It suffices to check that for any homogeneous a e a
of degree <<m, a(d) Q (x) = 0 < b (d) [a(2)Q] = 0 for all homogeneous
b of degree (m—dega). Now b(d)[a ()Q] = (ba, Q). Since baca,
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and Qeai, we conclude b(d)[a(®)Q] = 0. Thus Qe€eS,, so that
ot < S,. It follows that S,, = aj,.

me

The following lemma will be required for the proof of Theorem 4.2,

LemMA 4.1. Let i (x) be an invariant of G and g € G. Let f(x) be C >
on an n-dimensional region %. Then i (3) f (ox) = [i (0)f] (ox), provided
X, 0 X € XA.

Proof. An application of the chain rule yields
i () f (ox) = [i(c™")] (o),

for any polynomial i (x). If i (x) is invariant under G, then i (o~ ) = i (),

so that i (2) f (ox) = [i (0)f] (o).

THEOREM 4.2. (Steinberg [21]). Let I (x) = 11 L;(x), where
i=1

L, (x) = 0 arether.h.’sof G, and D II = linear span of partial derivatives
of II (x). Let S be the solution space of C* functions on the n-dimensional
region R satisfying 4.1) aQ)f=0,xe# and aed, S being the
ideal generated by all homogeneous invariants of G of positive degree.
Then S = D II.

ReEMARK. If O (n) is the orthogonal group acting on R", then it can easily
be shown that x; + ... x’ is a basis for the invariants of O (n), i.e. each
invariant polynomial is a polynomial in x7 + ... + x2. If we replace G
by O (n), then (4.1) reduces to Laplace’s equation

0* 0*
<ﬁ~ +...+~—>f=0.

ox 3 ox?2

Because of this, i1t is natural to refer to the elements in S as the harmonic
functions for . Theorem 4.2 describes these harmonic functions.

Proof of Theorem 4.2. The inclusion D II < S clearly follows from
a(®) Il = 0,ae s, It suffices to prove the latter for a homogeneous in-
variant of positive degree. By Lemma 3.4, II (ox) = deto. II (x), 0 €G.
By Lemma 4.1, [a()](ox) = a(®)II (6x) = det o [a (3)I]. Thus
a(d) IT is skew. Again by Lemma 3.4, IT|a (d) II. Since deg [a ()]
< deg I1, we must have a (3) II = 0. A

We now show that S < D II. Let f € S. We prove first that fis a poly-

nomial x;, 1 <{i<{n, is a root of P(X) = II [X—x;(ox)] = X!°!
£16;
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+ g, X+ L+ ayg|» where the a;s are homogeneous invariants of
positive degree. Thus x,/! = —a, x,!91"1 a5 €S, 1 <i<n The
latter implies that every homogeneous polynomial a (x) of degree > n | G [
is in . Hence a(d)f = 0, whenever a(x) is homogeneous of degree
>n|G|=fis a polynomial of degree < n|G|. S is therefore a finite
dimensional space of polynomials. In view of Fischer’s Theorem S < DII
< (DII)* = S*. A polynomial P (x) e (DII)* <= (P, Q (Q)II) = 0 V poly-
nomials Q < Q (d) (P ()I)|,=, V polynomials Q <>P () II = 0. We
must therefore show that P () II = 0 = Pe 7.

It suffices to prove this for homogeneous P. The result holds for deg P
> n|G|. Suppose that it holds for deg P = m + 1. We show that it holds
for deg P = m and, by induction, for arbitrary degree. Let L (x) = 0 be
an r.h. of G. Then L (d) P (d) Il (x) = 0. By the induction hypothesis
L Pe 4, so that

(4.) LOPE) = ¥ AW LG

where the A,s are polynomials and I,, ..., I, are a basic set of homo-
geneous invariants for G. Let ¢ be the reflection in the r.h. L (x) = 0.
Substituting ¢ x for x in (4.2) and subtracting the resulting ‘equation from
(4.1), we get

(4.3) L(x) (P (x) +P (ox)) = zé:1 (Ay (x) — Ay (6%)) I, (x)

Each [ A4, (x)— A, (ox)] = 0 whenever L (x) = 0. Thus

L(x) | [Ak (x) — Ay (ax)] )
and

(4.4) P(x) + P(ox) = i [

Ay (x) — Ay (ox)
L(x) ] I (%)

shows that P (x) = —P (ox) (mod ). Since the reflections in G generate G,
we conclude from the latter that P (x) = det ¢ P (ox) (mod #). Averaging

1
over G, we obtain P (x) = P* (x) (mod #), where P* (x) = G Y, deto
oeG

P (6x). We claim that P* (x) is skew. For if o, € G, then

1
P*(g,x) = TG Y. det o P(o0,X)
geG

1
o Y det 6o, P(00,x) = det o; P*(x).
1 aeG

(4.5)
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By lemma 3.4 P* (x) = II (x) i (x), where i is a homogeneous invariant.
If degi > 0, then P*e # = Pe 4. Otherwise P* = ¢II, ¢ a constant.
By assumption P (3) II = 0, while a () I = 0 for ae .. It follows that
P*Q)I = ¢ (I, II) = ¢ = 0, so that P = 0 (mod .%).

2. MEAN VALUE PROPERTIES

We prove the equivalence of system (4.1) and a certain mean value
property.

THEOREM 4.3 (Steinberg [21]). Let f(x)e C in the n-dimensional
region A and let it satisfy the mean value property (m.v.p.)

1
4.6) fx) = Gl Y, fx+oy), xeZand || y]| <s,,
ageG

where inf ¢, > 0 for any compact subset K of R and ||y ||* = Y yi. This
i=1

xeK

m.v.p. is equivalent to having fe C” and satisfying (4.1). It follows from
Theorem 4.2 that the space S of continuous solutions to (4.6) = D II.

REMARK. The harmonic functions on # are characterized as the con-
tinuous functions on # satisfying the m.v.p. f(x) = [ f(x+y)d o (),
xe R and ||y || < & where d o (») is the normalized Haar measure on the
orthogonal group O (n). (4.6) is just the G-analog of this m.v.p.

Proof of Theorem 4.3. Suppose first that £ (x) is C* on #Z and satisfies
(4.6). Let a (x) be any homogeneous invariant of positive degree. Apply
the operator a (d,) to both sides of (4.6). In view of Lemma 4.1, we get

(4.7) i = a(ﬁy)f(X) = >, a(@)f(x+ay)

I G I oeG
Z [a (8,) f (x+ y)] (0 y)

Q!

Use a(by)f(x+y) = a@)f(x+y) and set y = 0. We obtain
a(d,) f(x) = 0, xe # and a any homogeneous invariant of positive degree.

n

Hence a (3,) f(x) = 0, xeZ and ae 4. Since Y x;e.f, we conclude
i=1
in particular that f (x) is harmonic on %.
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Suppose next that f(x) is C on £ and satisfies (4.6). Let {5,} be a
sequence of C® functions on R" such that | §,(x)dx = 1, support of

{ ] ||x|| } 0, (x) > 0 for all x and k. Let

Je@) = [ fG=»6Mdy = [f(»)o(x=pdy.

It is readily checked that for any compact subset S of %, f, (x) e C* on
Int S (= interior of S) and satisfies (4.6) with £ replaced by Int S, provided
k is sufficiently large, and f, — f uniformly on S as £ — oo. For k suffi-
ciently large, f, is harmonic on Int S. It follows from Harnack’s Theorem
([15], p. 248) that f (x) is harmonic on Z%. Hence f (x) is real analytic on
Z ([15], p. 251) and so certainly C* on £.

Converselylet fe C* on £ and a 0) f = 0, xe # and ae€ #. Then fis
harmonic and so real analytic on %. Hence there exists ¢, > 0 such that

o8]

1
Sty = X E!—(ax,y)mf(x),xeﬂ

m=0
and ||y || < &, It follows that

(4.8) S fcton) = ¥ - x’y)f(x) x e
lGlaaG m=0

and ||y || < €, where

(4.9) Ppu(x,y) = === ), (x,0p)" = (ox, y)™.
| G| (ge |G| GI agG
From (4.9), we see that for fixed y, each P, (x, y) is a homogeneous

invariant polynomial in x of degree m. It follows that P, (d,, ») f (x) = 0,
x e and m < 1, and (4.8) reduces to (4.6).

The solution space to either (4.1) or (4.6) is the finite dimensional

vector space D II. The following result gives further information on
D II.

THEOREM 4.4 (Chevalley [4]). Let S, = vector space of homogeneous
polynomials of degree m in D II,0 <m < o0, sothat DIl = Z ® S,

Let di,...,d, be the degrees of the basic homogeneous mvarzants for G.
Then
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(410) i (dlm Sm) tm = T

m=0 i=1 1 —1t

and dim D Il = IGI
We prove first the preliminary

LemMA 4.2. Let R = k [x, ..., x,] = ring of polynomials in x4, ..., X,
with coeflicients from k, k being any field of characteristic 0. Let G be a
finite reflection group acting on k" and # the ideal generated by homoge-
neous invariants of positive degree. For any polynomial P, let P be its
residue class in the residue class ring R/.#. Suppose that Py, ..., P, are
homogeneous polynomials such that P, ..., P, are linearly independent
over R/# (the latter is a vector space over k). Then Py, ..., P, are linearly
independent over k (), the field obtained by adjoining the set 7 of all

invariant polynomials to k.

Proof. Suppose Y V;P; =0 where V;ek (), 1 <i <s. We may
i=1

suppose that the Vs are homogeneous and [deg V; + deg P,] is the same
for all i. Let 14, ..., I, be a basic set of homogeneous invariants of positive
degree. Let S;, 0 <Cj < o0, be the different monomials in 7 ... /, arranged

0
by increasing x-degree, with s, = 1. Let V; = Z ki S; 1 <i<s,

the k;;s being elements of k, and define k;, to be 0. We have

=]

(4.11) > VP
i=1

Z [ Z ijP;]S; =0
Assume as induction hypothesis, that k; = 0 for j </ Thus

Z [ Z ki;P;]S; = 0. S; ¢ ideal generated by the Sis, j >/, as

j=1 i=1
Iy, ..., I, are algebraically independent. It follows from Lemma 2.1 that

Z kyPief < > kyP,=0<k;=0,1<i<s.  Hence all
i= i=1

ki =0 and V; = 0,1 <i<s. lLe Py, .., P, are linearly independent
over k (I).

We now return to the proof of Theorem 4.4. Let A, ..., A, be homo-
geneous polynomials such that 44, ..., 4, form a basis for R/.#. By induction
on the degree, we see that every polynomial P may be expressed as

q
(4.12) P= Y J 4,
i=1
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where the J;s are invariant polynomials. Lemma 4.2 shows that this rep-
resentation is unique. Let R, = set of homogenecous polynomials of
degree m, I, = I n R,, (R/.9),, = vector space spanned by those A;s
for which degree 4; = m. Let

Pa() = % @m R B = % @im L)

m=0

Pre () = 0:‘_: dim (R/.F),, t™.

In view of the uniqueness of the representation (4.12), we have

(4.13) Pr(t) = pr(1) Pr, 4 (1)
Now
pr(t) = —; : (formula (2.5))
[T a-¢%
i=1
while
pr(t) = (1=1)"

| (as dim R, = ('"+,:’,_1)). By Fischer’s Theorem R/ may be identified

with D 11, so that pg,, (f) = Y (dim S,)) #™. Thus (4.13) becomes (4.10).
m=0

Set ¢ = 1 in (4.10). The left side becomes » dim S, = dim D II. Since

m=0
1 — %

=1+t+...+1t%1 =4,
1 —t

at t = 1, the right side becomes II d; = l G| (by Theorem 2.2). Thus
i=1

dim D IT = | G ,

We now describe the solution space to (4.6) when we restrict the direction
of y. For simplicity, we restrict ourselves to irreducible groups (the reducible
case 1s discussed in [12]).

THEOREM 4.5. Let f(x) € C in the n-dimensional region R and satisfy
the m.v.p. |

(4.14) f(x) = l——é—l Y f(x+toy), xeZ and 0 <t <eg,,
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inf e, > 0 for any compact subset K of % and y denoting a fixed vector
xeK

# 0. This m.v.p. is equivalent to having fe C* on # and P, (., )
f=0,xe® and 1 <m < o, P, being defined by (4.9).

Proof. Suppose first that fe C® on # and satisfies (4.14). Using the
finite Taylor expansion for f (x+toy), we get for each integer N >0

NI P,.(0,,
(4.15) 0= Y [_(;:'Jﬂ

m=1

] t" + 0@ " Hast—-0.

Dividing by successive powers of ¢ and letting ¢ — 0, we conclude
P,Q0,1)f=0,xeZ and 1 < m < o0. If fe C, then we argue as in the
proof of Theorem 4.3, introducing the functions f,. For any compact
subset S of # and k sufficiently large, the f;s will be C* on Int S and
satisfy there P, (d,,»)f = 0,1 <m < . P, (x,y) is a non-zero homo-
geneous invariant of degree 2. For irreducible G, there is up to a multi-

plicative constant, only one such invariant, namely ) x7. Thus
=1

P,(x,y) =c(y) > x;, where ¢ (y) # 0 is a constant depending on y.
i=1

Thus for k sufficiently large, f; (x) is harmonic on Int S. Since f;, — f uni-
formly on compact subsets of £, f (x) is harmonic on % and hence certainly
C” on A.

Conversely, let P,(0,,»)f=0,xe#Z and 1 <m < o. Since
P, (0., y)f = 0, fis harmonic and so real analytic on %. It follows that
there exists ¢, > 0 such that

(4.16) Y f(x+toy) = % I:P"’M} t", xeR
m=0

IG oelr ’n’
and 0 <t < ¢,
Since P, (bx, WS=0,xeZ and 1 < m < o0, (4.16) reduces to (4.14).

We shall describe the solution space to P,, (d,,»)f = 0,1 < m < o0,
y being a fixed vector # 0. We first prove some preliminary lemmas.

LEMMA 4.3. Let % be a collection of homogeneous polynomials in
k [xy ..., x,] of positive degree, k being a field of characteristic 0. Let G be
a finite reflection group acting on k”. The following conditions are equivalent.

1) € is a basis for the invariants of G
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i) € 1s a basis for the ideal # generated by the homogeneous invariants
of positive degree.

i) Let d, ..., d, be the degrees of the basic homogeneous invariants of G.

For each d; there exists a polynomial P; € € of degree d; such that

0(Py,...,P,)
0(Xy, ovy Xp)

Proof. Let # (¥) = ideal generated by %, so that .# (¥¢) < £. If i) holds,
then .4 (¥) contains every homogeneous invariant of positive degree, so
that ¥ <« S (%) = S = S (¥).

Thus 1) = ii). |

Suppose ii) holds. Choose in € a minimal basis for .#. The proof of
Chevalley’s Theorem shows that this minimal basis consists of » homo-
geneous invariants P, ..., P, which are algebraically independent

o(Py,...,P)
<> #
0(Xyy ovny Xp)

# 0.

0.

According to Theorem 3.1, these degrees must be d, ..., d,. Thus i) = iii).
Finally, the implication iii) = 1) is contained in Theorem 3.13.

LEMMA 4.4. Let G be a finite reflection group acting on k". Let
I, ...,I, be a basic set of homogeneous invariants of respective positive
degrees d,,...,d, which are assumed distinct; ie. d, < d, < ... < d,.
Let Py, ..., P, be another set of homogeneous invariants of respective
degrees d, ..., d,. Thus

(4.17) | Pi(x) = Fi(I{y %), ..., I;_; (x)) + ¢;1;(x)
=F,(x) +¢I;(x), 1 <i <n

where F; (x) is homogeneous of degree m;, with ¥, = 0, and ¢; a constant.
Then

O(Py,...,P) oy, ..., I)

4.18 = Cy{...Cp
(4.18) O 3(x1 .00 %)

e e ¢ e T e e T e S T S U L R A B,

Proof. We have

O(Py,...,P) O(Fy,....,F) oIy, ..., I,)
O0(Xyy o X)) 0Ly s L) O(Xgs ons X,)
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_[oF, 3 F, |
The matrix | — | is triangular and —— = ¢;, 1 <i <m, so that
O(Fy,....F)
a(xla'-'axn) -

TueorReM 4.6 (Flatto and Wiener [10]). i) Let S, be space of continuous

functions on the n-dimensional region R satisfying the mean value property
(4.14). S, = DI iff G # D,,, 2 <n < oo, and

d(Py, ..., Pa)

0(Xq,.ves X,

# 0.

i) For G # D,,, 2 <n < o0, we have

0Py -5 Py
0(Xqy ey Xy)

(4.19) = J (y) ... I (¥) I (x)

the J's being a basic set of homogeneous invariants for G. Hence
S, =DIiffJ, (y)...J,(y) #0.
Proof. According to Theorem 4.5, S is the solution space of
(4.20) feC?and p(0)f =0, xe and pe2,.

where 2, = (P (x, y),....P,, (X, »),...). 1t follows from Theorems 4.1, 4.2
that S, = DI iff #, = 4. By Lemma 4.3, 2,6 = 4 iff the degrees
dy, ..., d, are distinct and
o(Py,..., P
(Py, dn) 20
a(xla'--axn)
An inspection of the table in section 3.3 reveals that the d;s are distinct
except when G = D,,, 2 <<n < oo, in which case two ds equal 2n.

il) For each n-tuple a = (a4, ..., a,) of non-negative integers, let J, (x)

1
= Gl Y (ox)". We have
oeG
1
Pm(X,y) = Z(O'X y)m — 1~12 Z Z (O-lx> O-Zy)m =
IGI oeG |GI o, ¢G 09 &G
m !
(4.21) =y L0
=m o1 ¢G 063 &G a! laj=m .

Let 7, .. I be a basic set of homogeneous invariants of respective
degrees dy, ..., d,. Let | a| = d;, 1 <i <n. Then

L’Enseignement mathém., t. XXIV, fasc. 3-4. 19
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(4.22) Jo(®) = F,(I1 (%), .., i1 (%) + ¢, 1; (x) = Fo(x) + ¢, 1;(x)

where F,(x) is homogeneous of degree d; with F,(x) = 0 for i = 1,
and c, is a constant. (4.21), (4.22) give

A
i

(423) Py (,3) =Y Jo (DF.() + J(») L), 1 <i <n

jal=a; @
where
d;!
(4.24) T =% ey, 1 <i<n
laj=d; © *

(4.19) follows from (4.23) and Lemma 4.4. J; is homogeneous of degree d,.
We show that J,, ..., J, are algebraically independent and thus conclude
from Lemma 4.3 that J4, ..., J, form a basis for the invariants of G. Now
the J,s form a basis for the invariants of G (see Noether’s proof of
Theorem 1.1). Hence, by Lemma 4.3, there exists nJ,s of respective
degrees d,, ..., d, which are algebraically independent. By Lemma 4.4,
for each of these J.s, ¢, # 0. (4.22), (4.24) give

di! di .
(425) Jl(y) = Z E—'caFa(y) +( Z ;_'caz) Iz(y)a 1 <l <\7’l

jal=4d; : la]=m;

Foreach 1 <i <n, there exists an a such that[ a l =d; and ¢, # 0, so

d.
that the n constants Y —;cf are all # 0. It follows from (4.25) and
In|=d; 4 ‘
Lemma 4.4, that J,, ..., J, are algebraically independent.

The following theorem yields an algebraic characterization of the J;s.

THEOREM 4.7 [12]. J; (x) = ¢ Y x%,c# 0. For 2<i<nm, J;(x)
i=1 :

is determined up to a constant as the homogeneous invariant of degree d;
which satisfies the differential equations J, () J;(x) = 0,1 <k < i.

Proof. J; (x) is a non-zero homogeneous invariant of degree 2 and must

therefore be a non-zero multiple of ) x5 Let2 <i<mandl <k < d,.

i=1
Let O (x) be an arbitrary homogeneous invariant polynomial of degree k.
We have

1
(4.26) Q () P, (x,3) = Q@) [ 2 (¥, 0%)"]

|G l oeG
=m(m—-=1)...(im—=k+1)P,_(x,y) O (x)




T e S S
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From (4.23), we obtain

(4.27) 0(2) Py, (x,)
3 0@ ()] R® + [Q@ ) 1L,
e 1 <i <n

so that

di(d;—=1) -~ (d; =k +1) Py (x, ) @ (%)

@2 = ¥ U@ L] R+ [2@H()]LE,
e 1 <i<n

Suppose that Q (2) J;(¥) # 0. Choose y, so that Q (3) J;(y) # 0
at y,. Let y = y, in (4.28). The polynomial P,,_j (x, yo) has degree < d;
and thus is a polynomial in I, (x), ..., [;_; (x). Each F, is also a poly-
nomial in I, ..., I;_ ;. We conclude from (4.28) that I, ..., /; are algebraically
dependent, a contradiction. Hence Q (3) J; (») = 0, so that J, (9) J; (x)
=0,1 <k <.

The conditions of Theorem 4.7 determine J; up to a constant. For let
¥, = space of homogeneous invariants of degree d;, W; = space of homo-
geneous invariants of degree d; spanned by the monomials in Iy, ..., I;_;.
Then dim V; = dim W + 1. For any JeV,, the conditions J; (3)J (x)
= 0,1 <k <i are equivalent to Je W7. Since dim Wi = dim V;
— dim W, = 1, we conclude that J; is determined up to a constant.

COROLLARY. The manifold # = {y | J (y)---J,(y) = 0} contains
real points y # 0. IL.e. there exists y € R" such that § # D II.

Proof. For 2 <i<n,J;(3)J;(x) = 0. Since J;(x) =c ), x3,
i=1

¢ # 0, this means that J; (x) is harmonic. By the mean value property for
harmonic functions, the average value of J,(y) on a sphere of radius
r> 0= J;(0) = 0. Thus J; (y) must change sign on this sphere and a con-
nectedness argument yields the existence of a y # 0 for which J;(y) = 0.
In view of Theorem 4.6, we call .# the “exceptional manifold” for G and
the non-zero vectors y of .#, the “exceptional directions” for G. A geo-
metric description of .# is given in [24] for the groups H, and A4;. There
remains the problem of describing the solution space S, to them.v.p. (4.14) in
case y is an exceptional direction, as D IT is then a proper subspace of S,.

This seems to be a difficult problem. In [11], it is solved for the groups
Hj, A;.
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