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3. QUASICIRCLES

3.1 Definition. A Jordan curve is the image of a circle under a homeo-
morphism of the plane. If the homeomorphism can be taken to be a K-
quasiconformal mapping, the Jordan curve is called a K-quasicircle.

For a later application, we need the following result.

LEMMA 3.1. A K-quasicircle is the image of the real axis under a quasi-
conformal mapping of the plane which is conformal in the upper half-plane
- and K?*-quasiconformal in the lower half-plane.

Proof: Let C be a K-quasicircle. Then there is a K-quasiconformal
mapping w of the plane which carries the real axis onto C. Let u denote the
complex dilatation of w. By the existence theorem for Beltrami equations,
there is a quasiconformal self-mapping # of the upper half-plane with
complex dilatation u. If 4 is extended to the lower half-plane by reflection
in the real axis, we obtain a K-quasiconformal mapping of the plane. Then
w o h™ ! has the desired properties: by the uniqueness theorem for Beltrami
equations, it is conformal in the upper half-plane, and as a composition of
two K-quasiconformal mappings it is K *~quasiconformal in the lower half-
plane.

The notion of a quasicircle was introduced by Pfluger [15]; he arrived
at these curves, which he called “kreisdhnlich”, in connection with a sewing
problem for Riemann surfaces. Pfluger proved that a quasicircle, while
always of zero area, need not be rectifiable. Later, Gehring and Viisild [4]
showed that the Hausdorff dimension of a quasicircle is always < 2 but
can take any value 4, 1 <</ < 2.

3.2 Geometric characterization. The first systematic study of quasi-
circles is Tienari’s thesis [16]. His results were soon overshadowed by
Ahlfors [1], who gave an amazingly simple geometric characterization of
quasicircles: A Jordan curve passing through oo is a quasicircle if and only
if for any of its three successive finite points zy, z,, z5, the ratio | z; — z, | :
| z; — z5 | is uniformly bounded.

The condition of Ahlfors can be modified in various ways. Let U (z, r)
= {w|w —z| <r} and let clU denote the closure of U. A set E of the

extended plane is b-locally connected if the following two conditions hold
for every finite z and every r > 0:
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1° Any two points of the set E n clU (z, r) can be joined by an arc lying
in E nclU (z, br).

2° Any two points of the set E — U (z, r) can be joined by an arc lying
in E — U(z, r/b).

The following result has recently been proved by Gehring [2]:

LEMMA 3.2. Let the set C contain at least two points and bound a simply
connected domain A. If A is b-locally connected, then C is a c (b)-quasi-
circle, where ¢ (b) depends only on b. |

3.3 Quasiconformal reflection. Let C be a Jordan curve bounding the
domains 4 and B. A sense-reversing K-quasiconformal mapping ¢: A - B
1s a K-quasiconformal reflection in C if ¢ leaves every point of C invariant.

It is not difficult to prove that C admits a quasiconformal reflection if
and only if C is a quasicircle. It follows that a quasiconformal mapping
f+ A — Bbetween domains 4 and B bounded by quasicircles can be extended
to a quasiconformal mapping of the plane. In fact, if ¢ and Y are quasi-
conformal reflections in the boundaries 04 and ¢B, such that ¢ is defined
outside 4 and y in B, then y o f 0 ¢ extends f quasiconformally.

A quasicircle always admits quasiconformal reflections which are
continuously differentiable or even real-analytic. For a K-quasicircle
passing through co, a reflection ¢ exists such that | d (z) | / | dz | is bounded
by a constant depending only on K.

For more details of the properties of quasicircles we refer to [10].

4. DEVIATION OF A DOMAIN FROM A DISC

4.1 Schwarzian derivative. Let f be a locally injective meromorphic
function in a simply connected domain 4. At finite points of 4 which are
not poles of f, the Schwarzian derivative S, of f'is defined by

1
Sy = "1 - z(f”/f’)z,

and the definition is extended to oo and to the poles of f by means of
inversion. |

The Schwarzian derivative is holomorphic in A. Conversely, every
function which is holomorphic in A4 is the Schwarzian of some f. The
Schwarzian vanishes identically if and only if fis a Mobius transformation.




	3. Quasicircles

