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with

A(x,y) (l-2<200) (l-2Q(x-y*)) (1 -2Q(x))

Observe that A (x,y) 'A (y, x) and A (x, y)2 1„ so that A (x, y) e O («).

The matrix A (x, y) generalizes the angle arg (1 —xy)/( 1 — yx).
It is useful to note that | Ax — Ay |2 | A' (x) | | ^4' (.y) | \ x - y\2

for any Möbius transformation A, and [Ax, Ay]2 \ Ä (x) | | A' (y) |

[x, y]2 if A eG. There is an important relation between Tyx and Txy

expressed by

(4) Tyx - A (x,y)Txy.

We refer to [2, 3, 4, 5] for the elementary proofs of these formulas.

5. Fundamental solutions

A continuous mapping / : B -> R" will be called a deformation. In this

paper we shall assume, mainly for simplicity, that / is continuous on the

boundary S (1), and that x */(x) 0 on S (I); this means that / maps B

on itself when regarded as an infinitesimal mapping.
A deformation is trivial if Sf 0. There are very few trivial

deformations: a complete list is given in [3].

It is customary to say that/is a quasiconformal deformation if 11 Sf\\
e L00 (B); here J| Sf\\ is the function whose value at x is the square norm
of the matrix Sf (x). More generally, we shall also consider functions with
\\Sf\\eLp (£); we abbreviate to Sfe LP, and we denote the Z/-norm of
the square norm by || Sf\\p. The same convention will prevail for all
matrix-valued functions.

We shall say that / is harmonic if S* p Sf 0, p (1 — |x|2)-".
Because of the invariance, if / is harmonic and AeG, then A*f is also
harmonic. Harmonicity in this sense is not the same as requiring the
components to be harmonic with respect to the Poincaré metric.

There are n linearly independent solutions of the equation S* y 0
which are homogeneous of degree 1 - n. We denote them by y k,
k 1, n, the elements being

lij,k I % I (àik,Xj + ^ij-Xfr) + (jl 2) I X I " 2
X^XyX^.

There is a unique vector-valued function gtk(x) with components
Qik (x) such that g,k(x) 0 for |x| 1 and p Sg mk so that
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S* p Sg k 0, or more precisely a Dirac distribution concentrated at 0.

It is easy to see that g giJc, which we regard as a Green's matrix, will be

of the form g ik(x) a | x | dik + b | x | xtxk\ the explicit expressions
for a (r) and b (r) are unimportant, except that g is of order O ((1 - |x|2)"+1)
for | x | -> 1 and O \ x |~" + 2) for x -> 0 (if n 2 the latter is replaced
by O (log 1/1 x |)).

IfUeO (n) it is immediate that g (Ux) Ug {xfiU. If we replace x
by Txy and U by - A (x, y) it follows with the help of (4) that

(5) A (y,x)g(Tyx) g(Txy)A (y,

We now define the Green's matrix with singularity at y by

Definition 1.

(6) g.k(x,y) (1 - I y \2)(T*g.k)(x)(1 - I |2)

[_x>y]2A (y, x) g (Tyx

It is clear that (S* p S)1 g (x, y) 0 (the subscript indicates that the

operator applies to the first variable). In view of (5) we can read off the

symmetry property

Lemma 1. g (x, y) fg (y, x).

This symmetry plays a prominent role in H. Weyl's classical paper [9]
which has been a strong inspiration for this work.

If A e G it is an easy consequence of (6) that

g(Ax, Ay) A' (x) g (x, y)'A' (y)

or, in a more suggestive form,

AfA* g(x, y)g(x,y),
where A% is A* applied to the first variable and the first index, and similarly

for A *
-

Next we define

Definition 2.

y..,k(x>y)P (x)Stg.k (x, y)(1 -1 y |2) p (x) (StT*g^

It is evident by invariance that S* y ^k (x, y) 0. When x and y are
transformed by the same A e G one finds

A*A* y..,, (x, y) dx y..„(x, y) dx
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where A * acts on x and the double index, A * on y and the single index.

For A Ty this leads to the explicit formula

(1 _ I v |2)" + 1

y..,* y) -r—^-n—A (f > x) y..,k (?>) a (x, y).
[x9y]Zn

We note that y
9

(x, 0) y (x) and y_f< (0, y) — — (1 — | y |2)"+1 y (y).
We shall need to apply S to either variable in y (x, y). For this

purpose we introduce

Definition 3. rijthk{x,y) [S2yijt. (x, y)]hk.

Because differentiations with respect to x and y commute it is clear

that S * F ihk (x, y) 0. Moreover, starting from the relation g ik (x, y)
9ki (y> x) il is n°l difficult to derive the following symmetry property:

Lemma 2. p (y) FijM (x, y) p (x) Fhk>ij (y, x).

It follows, in particular, that S*p (y) F0- (x, y) 0.

It is also important to know the asymptotic behavior of riJ>hk (x, y)
when x - y -» 0. We observe first that

p(y)rijM(o,y) - (i-\y |2)—[s(i-\y \2)n+1yij,.(y)lk

~ SijM(y) + RijM(y)
where Sijfhk(y) [S yij}fiy)]hk is homogeneous of degree - n and

R-ij,hk (f) is homogeneous of degree 2 — n. The explicit expression for
Rij,hk O, y) reads

(i-l y I2)"
riU. (x> y) r 12

A (x' ^ r^'(0' T*y) J (^'•[x, y J

Elementary estimates show that

(7) I riJM(x,y) + SijM(x-y) | ^ Cn | x - y |1-" [x, y]-1
with constant Cn.

6. Potentials

Given an SM„-valued function v on B wç.define its potential as the
vector-valued function Iv with components

1V (y)k I Vy (x) yiJJt(x, >0 dx
B
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