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with
A(x,y) = (1=20()) (1 =20 (x—y*) = (1-20(y—x%)(1 -20 () .

Observe that A4 (x, y) = '4 (y, x) and 4 (x, y)* = 1, so that 4 (x, y) € O (n).
The matrix 4 (x, y) generalizes the angle arg (1 —Xy)/(1— yx).

It is useful to note that | Ax — Ay|* = |4 ()| |4 (W] |x =¥ E
for any Mébius transformation 4, and [dx, Ay]> = | 4" (x)| | 4" ()]
[x, y]> if A€ G. There is an important relation between 7T ,x and T,y
expressed by '

(4) Tyx = —A(xay) Txy

We refer to [2, 3, 4, 5] for the elementary proofs of these formulas.

5. FUNDAMENTAL SOLUTIONS

A continuous mapping f : B — R" will be called a deformation. In this
paper we shall assume, mainly for simplicity, that f is continuous on the
boundary S (1), and that x - f(x) = 0 on S (1); this means that f maps B
on itself when regarded as an infinitesimal mapping.

A deformation is trivial if Sf = 0. There are very few trivial defor-
mations: a complete list is given in [3].

It is customary to say that f is a quasiconformal deformation if || Sf||
e L* (B); here || Sf|| is the function whose value at x is the square norm
of the matrix Sf'(x). More generally, we shall also consider functions with
|| Sf|| € L? (B); we abbreviate to Sfe L?, and we denote the LP-norm of
the square norm by || Sf||,. The same convention will prevail for all
matrix-valued functions.

We shall say that f is harmonic if S*p Sf =0, p = (1—|x]»)™"
Because of the invariance, if f is harmonic and 4 € G, then 4* f is also
harmonic. Harmonicity in this sense is not the same as requiring the com-
ponents to be harmonic with respect to the Poincaré metric.

There are n linearly independent solutions of the equation S*y = 0
which are homogeneous of degree 1 — n. We denote them by y

= 1, ..., n, the elements being

Viga () =[x |7 (0uX; 4+ 6 jux; — 65%,) + (n—2) | x| 7772 xpx %, .

There is a unique vector-valued function g, (x) with components
gir (x) such that g, (x) =0 for |x| =1 and pSg, =y, so that
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S*pSg , = 0, or more precisely a Dirac distribution concentrated at 0.
It is easy to see that g = g;,, which we regard as a Green’s matrix, will be
of the form g,, (x) = a( | x I )0 + b( l X l ) x;x,; the explicit expressions
for a(r) and b (r) are unimportant, except that g is of order O ((1— |x|?)"*")
for | x| — 1 and O (|x|™"*?) for x > 0 (if n = 2 the latter is replaced

by O (log 1/ | x |).
If Ue O (n) it is immediate that g (Ux) = Ug (x)'U. If we replace x
by T,y and U by — 4 (x, y) it follows with the help of (4) that

(5) A4(y,x)g(Tx) = g(Ty)A(y,x).
We now define the Green’s matrix with singularity at y by
Definition 1.
(6)  gu(x,¥) == ]yP)(Ty90(x) =0~ 1y*)T,(x)""g(T,x)
=[x, y1°4(y,%) g (T,x) .

It 1s clear that (S* p S); g (x, y) = 0 (the subscript indicates that the
operator applies to the first variable). In view of (5) we can read off the
symmetry property

LemMA 1. g (x,») = g (¥, X).

This symmetry plays a prominent role in H. Weyl’s classical paper [9]
which has been a strong inspiration for this work.
If A € G it is an easy consequence of (6) that

g (Ax, Ay) = A" (x) g (x, y)'4" (y)
or, in a more suggestive form,
ATAS g (x,y) = g(x,9),

where A7 is A* applied to the first variable and the first index, and simi-
larly for A3.
Next we define

Definition 2.
7o) = p () S, y) = A=y [Dp ) (S:1T59 0 (%)

It is evident by invariance that S} Y..x(x,y) = 0. When x and y are
transformed by the same 4 € G one finds

ATASy. (x,y)dx =7y (x,y)dx
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where A¥ acts on x and the double index, 45 on y and the single index.
For A = T, this leads to the explicit formula

(1= |y Py™?
[X, y:IZn
We note thaty  (x,0) =y, (x)andy  (0,y) = — (1 —IJ’ lz)"ﬂ y.... ()

We shall need to apply S to either variable in y_  (x,y). For this
purpose we introduce

Vo (x,y) = Ay, %)y (T,x)A(x,y) .

Definition 3. I';; . (X, ¥) = [S27:5,. (X5 V)lnk

Because differentiations with respect to x and y commute it is clear
that ST I'._ . (x,») = 0. Moreover, starting from the relation g, (x, y)
= g,; (¥, x) it is not difficult to derive the following symmetry property:

LEMMA 2. p (0) T'ij o (X, 1) = p (%) I i (¥, x).

It follows, in particular, that S5 p (y) T ij... (x,y) = 0.
It is also important to know the asymptotic behavior of I';; ;. (x, )
when x — y — 0. We observe first that

p(¥) Fijw(0,9) = = (A= [y HT"[SA =1y )"y, )]
= == Sij,hk(y) + Rij,hk(y)

where S} .. (¥) = [S7:;.. (D] is homogeneous of degree — n and
R;; wi (¥) is homogeneous of degree 2 — n. The explicit expression for
I';; i (x, y) reads

=y
Iy, (x,y) = ——=5,— 40, ) I;.0, T,y)4(y,x) .
[x, y]
Elementary estimates show that
@) | Ui (X, y) + fSij,hk(x—y) | = Cn l,x, -y [xa)’:rl

with constant C,.

6. POTENTIALS

Given an SM,-valued function v on B we define its potential as the
vector-valued function Iv with components

Iv(y)y = 1; Vij(x)yij,k(xsy)dx-
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