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MÉTRIQUES KÂHLÉRIENNES ET SURFACES MINIMALES

par Hansklaus Rummler Q

§ 0. Introduction

Il est bien connu que dans une variété kâhlérienne les sous-variétés

complexes locales sont des sous-variétés minimales par rapport à la métrique
riemanienne induite par la métrique kâhlérienne donnée. Une première
démonstration a été donnée par Wirtinger dans [4] pour C" avec la métrique
canonique 1 dzt ® dz-v Dans la suite, plusieurs auteurs ont généralisé le

résultat pour les variétés kâhlériennes quelconques (voir par ex. [2] et [3]).
Le but de ce travail est de fournir une preuve que cette condition nécessaire

est aussi suffisante pour qu'une métrique hermitienne donnée soit
kâhlérienne. En effet, on démontre un résultat encore plus général: Si

toutes les sous-variétés complexes locales de dimension 1 sont des surfaces

minimales par rapport à la métrique riemanienne induite par une métrique
hermitienne donnée, celle-ci est déjà kâhlérienne. Il suffit même de montrer
l'existence d'une famille assez large de sous-variétés complexes locales
de dimension 1 qui sont des surfaces minimales.

La démonstration du résultat susmentionné consiste en deux parties
(voir les lemmes 1 et 2 du paragraphe 2): la première prouve que l'hypothèse

implique que toutes les sous-variétés complexes locales de dimension 2

sont kâhlériennes avec la métrique hermitienne induite; la seconde en
tire la conclusion que la métrique donnée est déjà kâhlérienne.

Vu sa simplicité et pour être complet nous donnons également la preuve
de la nécessité de la condition.

§ 1. Rappels et notation.

Soit M une variété complexe. Pour chaque xe M l'espace tangent
TXM est un espace vectoriel sur C, la structure complexe étant fournie
par l'application (dzu dzn) : TXM C" si zu zn sont des coor-

x) Supporté par une bourse du Fonds national suisse de la Recherche.
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données holomorphes en x. La multiplication par le scalaire z e C est
notée J : TXM -> TXM. Pour z} Xj + ijp j 1, n (décomposition
en parties réelle et imaginaire) on a donc

Soit une métrique hermitienne. En la décomposant en ses parties
réelle et imaginaire, (,)=<,> + iœ, on obtient la métrique rieman-
nienne induite < > : Re ainsi que la forme différentielle de degré 2,

œ : Im appelée forme fondamentale.

«/,<,> et co sont reliés par les formules suivantes:

<J^rj> - < £, Jrj > < JÇ,Jrj > < £, rj > (2)

co(£, rj) < Ç,Jrf > (3)

pour Ç, ri e TXM, xe M.
La métrique hermitienne est dite kâhlérienne, si sa forme

fondamentale est fermée:
à œ 0 (4)

Cette définition est équivalente à une caractérisation plus géométrique:
Si D est la connexion de Levi-Civita associée à la métrique riemannienne

< > alors D est C-linéaire dans la seconde variable, c'est-à-dire on a

D^Jn) j{D^n) (5)

pour tout champ de vecteur rj sur M et pour tout vecteur tangent (Quant
à l'équivalence de (4) et (5), voir p. ex. [2], vol. II, p. 142).

Soit maintenant M une variété différentiable (de classe ^°°) munie d'une
métrique riemannienne < >, et soit D sa connexion de Levi-Civita.
Pour une sous-variété différentiable locale N avec un champ de vecteur
normal local v (c'est-à-dire v : N -> TM, v (x) e TXNL, 11 v (x) 11 1),

on définit l'application de Weingarten associée à ce champ normal v:
c'est l'application Wvx TXN ^ TXN, Wyx (0 - ~prx (D5v), où

prx : TXM - TXN est la projection orthogonale. Wx est définie pour
tout x dans le domaine de v, et c'est une application symétrique par rapport
à la métrique riemanienne induite sur N. Sa trace décrit la variation de

l'élément de volume pour les variations de N dans la direction v, et N
est appelée sous-variété minimale de M si cette trace trWx est nulle pour
tous les champs de vecteur normaux v sur N. (Cf. [2], vol. II, p. 34. Dans
le cas classique d'une hyper-surface N dans l'espace euclidien M R",
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tr Wv est la courbure moyenne de N, orienté par le champ normal v.)

C'est une remarque triviale mais très utile que la trace de l'application
de Weingarten peut être calculée par la formule suivante :

trWl - Ya <Dïiv> >
j= i

si (£1? Çp) est une base orthonormale de TXN.

§ 2. Métrique hermitienne et sous-variétés minimales.

Soit de nouveau M une variété complexe dotée d'une métrique
hermitienne Cette fois, on considère à la fois la structure de variété

complexe hermitienne et celle de variété differentiate riemannienne induite,
et on se propose de démontrer le théorème suivant:

Théorème. Pour la métrique hermitienne donnée les conditions
suivantes sont équivalentes :

(a) C'est une métrique kâhlérienne.

(b) Par rapport à la métrique riemannienne induite, toute sous-variété

complexe locale de M est une sous-variété minimale.

(c) Par rapport ci la métrique riemannienne induite, toute sous-variété

complexe locale de dimension 1 dans M est une surface minimale.

Remarque. Dans (b) et (c) c'est en général important de considérer
les sous-variétés complexes locales parce que (a) est une condition locale
et que la famille des sous-variétés complexes globales peut être aussi
restreinte qu'elle vérifie (b) sans que la métrique soit kâhlérienne. Néanmoins,
la preuve du théorème montre que dans certains cas il suffit de vérifier (b)
ou (c) pour les sous-variétés complexes globales.

Démonstration.

(a) => (b). Soit N une sous-variété analytique complexe locale
dans M avec un champ de vecteur normal v et soient £, rj deux champs
tangents à N. On a alors — avec les notations du paragraphe précédent —

<DjçV,Jq> - < v, D j Ji] > - < v, JDj^rj >

- < v, JDnJ £ + J [J£, r[\ > < v, Dtf >
< v, Dp7 + [rç, £] > < V, DçTj >
— < Dp), Y] >
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Pour obtenir cette suite d'égalités on utilise la caractérisation (5) d'une
métrique kâhlérienne et les propriétés bien connues de la connexion de
Lévi-Civita D ainsi que le fait que les champs de vecteur r\, Jrj, [rj, Ç\ et
J [/£, tj\ sont tangents à N et par conséquent perpendiculaires à v.

En calculant maintenant la trace de l'application de Weingarten Wx
avec la formule (6) pour une base orthonormale de TXN de la forme
(fix, Çp, JÇl9 JÇp) nous trouvons le résultat tr Wx 0 parce que
< DJti + < Duv, £i> 0 pour i 1, ...,p.

(b) => (c). C'est trivial!

(c) => (a). Pour mieux séparer les parties « géométrique » et «

analytique » de la démonstration nous la présentons sous forme de deux lemmes :

Lemme 1. La condition (c) du théorème implique

dco(Ç9JÇ,0 0, VÇ9ÇeTxM VxtsM (7)

Remarque. Ce lemme dit précisément que les sous-variétés complexes
locales de dimension 2 sont kâhlériennes avec la métrique hermitienne
induite, car cela équivaut à dire que dœ fi, rj, Q 0 chaque fois que les

trois vecteurs Ç e TXM sont linéairement dépendants sur C. Mais
dans ce cas l'espace R-linéaire engendré par rj, £ est de dimension < 2

ce qui entraîne dco fi, rj, Ç) 0, ou il contient une base réelle de la forme

fi, 7£, Q, ce qui implique également dco fi, q, 0 0 à cause de (7).

Lemme 2. Si la forme fondamentale co de la métrique hermitienne donnée

vérifie (7), elle est déjà fermée.

Démonstration du lemme 1. Soit x e M. Il suffit de prouver
dco fi, J£, C) 0 pour 0 C e TXM avec || £ || 1, 1. 0 /£. Nous
prolongeons 0 /£ et £ en champs de vecteurs sur un voisinage de x comme
suit: Il existe un voisinage de x dans M avec un feuilletage analytique
complexe dont les feuilles sont des sous-variétés complexes de dimension 1

et tel que £ soit tangent à la feuille passant par x. On prolonge maintenant
£ et £ par des champs de vecteur nommés également £ et £ de sorte que
£ soit tangent aux feuilles avec || £ || 1 et que £ y soit perpendiculaire.
Cela nous permet de calculer dco {fi, /£, Q par la formule suivante (cf. [1]):

dœ(Ç,JÇ,Q É(û>(J{,0) +/qco(C,0) +C(û>(é,J0)

-co&Ljao -©([JÉ.cu) -©(K.éué).
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Les formules (2) et (3) du premier paragraphe montrent bien que les

trois premiers termes sont nuls et que le quatrième l'est également pour
la même raison parce que [£, JÇ\ est tangent aux feuilles, donc perpendiculaire

à /(. Ainsi de l'expression pour dœ (f /£, <Q il ne reste Que

dœ(^JL0 -co([C,c],Ji')
- <[•/£,£],/£> + <K,£U>

- - < DjçC, J ç > + < DJ ç,JÇ >
+ < D£, Ç > - < D£, i >

- <Dj£,JÇ > - <D&Ç >

et c'est la trace de l'application de Weingarten W- qui est nulle par hypothèse.

(Les deux autres termes dans l'avant-dernière somme sont nuls

par notre choix de Ç avec || £ || 1).

Démonstration du lemme 2. Comme nous l'avons déjà remarqué,
la condition (7) implique dœ (Ç, rj, Q 0 si ç, rj, Ç e TXM sont linéairement
dépendants sur C. Traitons donc maintenant du cas où ç, rj, Ç sont linéairement

indépendants sur C: Un changement linéaire des coordonnées
holomorphes données nous en fournit de nouvelles pour un voisinage de x,

d d
zi + iyu z„ x„ + />„, telles que £ — (x), yj — (x) et

dxx CX 2

d ô d
C x (x) Prolongeons f, rj, C par les champs de vecteur —etdx3 dxl ôx2

d dôd— respectifs. Alors JÇ -—, et J rj -—= d'après (1).
ôx3 „„ „ dyx 3

Soient maintenant rj, Ç,troisvecteurs quelconques parmi rj, 4,

JC, J '/, /C- Alors, [£, »7] [;/, 4] [£, £] 0, et on obtient

d(o(Ç,ri,0 £ < *1,JÇ >+ 1 <Ç,Jl; >+ Ç < Ç,Jrj > (8)

D'autre part,

dœ{Ç+Jri,JÇ-ri,0 dco(£,JÇ,Q + Q

- dco({,ij,Ç) - dœ(JÇ,Jt1,0
Dans cette équation, le terme à gauche et les deux premières expressions
à droite sont nuls par l'hypothèse (7), ce qui implique la relation

da>(Ç,ti,0 - Ç)

(qui, en effet, est équivalente à (7)).
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En appliquant (8) avec £ JÇ, rj Jr\, £ £, nous obtenons

dö(£,iy,o -J^<JnJi> -Jn<L-i> - ^<JL-n>
+Jfj<C^> ~C<LJrj>.

Finalement on permute les vecteurs £, rç, £ de façon cyclique et on
prend la somme des trois égalités ainsi obtenues:

3dœ(trj,0 - / £ < £ > + Jri <C,Ç > - £ < £,/rç >
— Jyj < C, Ç > + J£ <£,>?> - £ < rj,JÇ >

-JC<ç9r1> + /£<>?,£> -n <LJÏ>
-dû> (£,*/, £),

ce qui achève la preuve de dm (£, Q 0.

Remarque. La démonstration du lemme 1 reste valable si l'on
remplace l'ensemble de toutes les sous-variétés complexes locales de dimension 1

par une famille 3F suffisamment large : Les éléments de 3F doivent être à

la fois des sous-variétés complexes locales de dimension 1 et des surfaces

minimales par rapport à la métrique riemannienne induite, et pour chaque

x g M et chaque vecteur tangent £ g TxM on doit avoir un feuilletage local

par des membres de la famille de sorte que la feuille passant par x ait £

comme vecteur tangent. Ainsi il suffit par exemple de contrôler pour
une métrique hermitienne donnée sur l'espace projectif CPM que toutes
les droites projectives dans CPn sont des surfaces minimales par rapport
à la métrique riemannienne induite.
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