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METRIQUES KAHLERIENNES ET SURFACES MINIMALES

par Hansklaus RUMMLER )

§ 0. INTRODUCTION

Il est bien connu que dans une variété kidhlérienne les sous-variétés
complexes locales sont des sous-variétés minimales par rapport a la métrique
riemanienne induite par la métrique kédhlérienne donnée. Une premiere
démonstration a été donnée par Wirtinger dans [4] pour C" avec la métrique
canonique 2 dz; ® dz,. Dans la suite, plusieurs auteurs ont généralisé le
résultat pour les variétés kdhlériennes quelconques (voir par ex. [2] et [3]).

Le but de ce travail est de fournir une preuve que cette condition néces-
saire est aussi suffisante pour qu’une métrique hermitienne donnée soit
kdhlérienne. En effet, on démontre un résultat encore plus général: Si
toutes les sous-variétés complexes locales de dimension 1 sont des surfaces
minimales par rapport a la métrique riemanienne induite par une métrique
hermitienne donnée, celle-ci est déja kdhlérienne. Il suffit méme de montrer
Pexistence d’une famille assez large de sous-variétés complexes locales
de dimension 1 qui sont des surfaces minimales.

La démonstration du résultat susmentionné consiste en deux parties
(voir les lemmes 1 et 2 du paragraphe 2): la premiére prouve que 1’hypo-
thése implique que toutes les sous-variétés complexes locales de dimension 2
sont kédhlériennes avec la métrique hermitienne induite; la seconde en
tire la conclusion que la métrique donnée est déja kiahlérienne.

Vu sa simplicité et pour étre complet nous donnons également la preuve
de la nécessité de la condition.

§ 1. RAPPELS ET NOTATION.
Soit M une variété complexe. Pour chaque xe M l’espace tangent

T .M est un espace vectoriel sur C, la structure complexe étant fournie
par lapplication (dzy, ..., dz,) : T, M — C" si z,...,z, sont des coor-

1) Supporté par une bourse du Fonds national suisse de lakRecherche.
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données holomorphes en x. La multiplication par le scalaire ie C est
notée J: T .M —T,M. Pour z; = x; +iy;, j = 1, ..., n (décomposition
en parties réelle et imaginaire) on a donc

; 0 B 0 i 0 B 0 oo 0
0X; B 8yj’ 0y, B axj’J_ et

Soit (,) une métrique hermitienne. En la décomposant en ses parties
réelle et imaginaire, (,) = <, > + iw, on obtient la métrique rieman-
nienne induite < , > : = Re (, ) ainsi que la forme différentielle de degré 2,
w: = Im (,), appelée forme fondamentale.

J, <, > et w sont reliés par les formules suivantes:

<Jén>=—<&In>, <JEIn> = <&n> (2)

w(n) = <& JIn> (3)
pour &, nel M, xe M.
La métrique hermitienne (, ) est dite kdhlérienne, si sa forme fonda-

mentale est fermée:
dow = 0. (4)

Cette définition est équivalente & une caractérisation plus géométrique:
Si D est la connexion de Levi-Civita associée a la métrique riemannienne
<, >, alors D est C-linéaire dans la seconde variable, c’est-a-dire on a

Dz; JJn) = J(DHI) (5)

pour tout champ de vecteur i sur M et pour tout vecteur tangent £. (Quant
a I’équivalence de (4) et (5), voir p. ex. [2], vol. II, p. 142).

Soit maintenant M une variété différentiable (de classe ¥*) munie d’une
métrique riemannienne < , >, et soit D sa connexion de Levi-Civita.
Pour une sous-variété différentiable locale N avec un champ de vecteur
normal local v (c’est-a-dire v:N—»>TM, v(x)eT N, | v (Xx) || = 1),
on définit [’application de Weingarten associée a ce champ normal v:
c’est lapplication Wy =TN - T N, W () = —pr,(D»), ol
prio: T .M — T_N est la projection orthogonale. W, est définie pour
tout x dans le domaine de v, et c’est une application symétrique par rapport
a la métrique riemanienne induite sur N. Sa trace décrit la variation de
I’élément de volume pour les variations de N dans la direction v, et N
est appelée sous-variété minimale de M si cette trace tr W, est nulle pour
tous les champs de vecteur normaux v sur N. (Cf. [2], vol. II, p. 34. Dans
le cas classique d’une hyper-surface N dans l’espace euclidien M = R”,
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tr W est la courbure moyenne de N, orienté par le champ normal v.)
C’est une remarque triviale mais trés utile que la trace de P'application
de Weingarten peut étre calculée par la formule suivante:

p

j=1

si (&4, ..., &,) est une base orthonormale de 7. N.

§ 2. METRIQUE HERMITIENNE ET SOUS-VARIETES MINIMALES.

Soit de nouveau M une variété complexe dotée d’une métrique her-
mitienne (,). Cette fois, on considére a la fois la structure de variété
complexe hermitienne et celle de variété différentiable riemannienne induite,
et on se propose de démontrer le théoréme suivant:

THEOREME. Pour la métrigue hermitienne donnée les conditions sui-
vantes sont équivalentes :
(a) C’est une métrique kdhlérienne.
(b) Par rapport a la métrique riemannienne induite, toute Ssous-variété

complexe locale de M est une sous-variété minimale.

(¢c) Par rapport a la wmétrigue riemannienne induite, toute Ssous-variété
complexe locale de dimension 1 dans M est une surface minimale.

Remarque. Dans (b) et (c¢) c’est en général important de considérer
les sous-vari¢tés complexes locales parce que (a) est une condition locale
et que la famille des sous-variétés complexes globales peut étre aussi res-
treinte qu’elle vérifie (b) sans que la métrique soit kidhlérienne. Néanmoins,
la preuve du théoréme montre que dans certains cas il suffit de vérifier (b)
ou (c) pour les sous-variétés complexes globales.

Démonstration.

(a) = (b). Soit N une sous-varié¢té¢ analytique complexe locale
dans M avec un champ de vecteur normal v et soient &, 5 deux champs
tangents a N. On a alors — avec les notations du paragraphe précédent —

— <v,JDJE+J[JEn] > = <v,D,¢ >
<v,Den +[n,¢] > = <v,Den >
- — <D§V,1’]>.
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Pour obtenir cette suite d’égalités on utilise la caractérisation (5) d’une
metrique kdhlérienne et les propriétés bien connues de la connexion de
Lévi-Civita D ainsi que le fait que les champs de vecteur #, Jn, [1, ¢] et
J [J¢, n] sont tangents a N et par conséquent perpendiculaires a v.

En calculant maintenant la trace de 1’application de Weingarten W,
avec la formule (6) pour une base orthonormale de 7, N de la forme
&5 o0s €y JEy, oo, JE) nous trouvons le résultat # W) = 0 parce que
< Dy v, JG; > + < De. v, &> =0pouri=1,..,p.

(b) = (c). Clest trivial!

(c) = (a). Pour mieux séparer les parties « géométrique » et « ana-
lytique » de la démonstration nous la présentons sous forme de deux lemmes:

LeMME 1. La condition (c¢) du théoréeme implique

dw(E,JE0 =0, VELeT. M, Vxe M. (7)

Remarque. Ce lemme dit précisément que les sous-variétés complexes
locales de dimension 2 sont kihlériennes avec la métrique hermitienne
induite, car cela équivaut a dire que dw (&, n, {) = 0 chaque fois que les
trois vecteurs &, n, { e T.,M sont linéairement dépendants sur C. Mais
dans ce cas I’espace R-linéaire engendré par &, i, { est de dimension < 2
ce qui entraine dw (&, n, {) = 0, ou il contient une base réelle de la forme

(E, Jg, CN), ce qui implique également dw (&, 1,{) = 0 a cause de (7).

LEMME 2. Sila forrhe fondamentale w de la métrique hermitienne donnée
vérifie (7), elle est déja fermée.

Démonstration du lemme 1. Soit xe M. 11 suffit de prouver
do (&, JE () = 0 pour & (eT M avec ||E]| = 1,{ L & JE Nous pro-
longeons &, JE et { en champs de vecteurs sur un voisinage de x comme
suit: 1l existe un voisinage de x dans M avec un feuilletage analytique
complexe dont les feuilles sont des sous-variétés complexes de dimension 1
et tel que & soit tangent a la feuille passant par x. On prolonge maintenant
& et { par des champs de vecteur nommés également ¢ et { de sorte que
¢ soit tangent aux feuilles avec || & || = 1 et que { y soit perpendiculaire.
Cela nous permet de calculer dw (&, J¢&, {) par la formule suivante (cf. [1]):

do(&,JE0) = E(oUE) +TE(@ 8) + (0 TY)
— (&, 7.0 —o(JE,(, 9 — o, ,J90).
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Les formules (2) et (3) du premier paragraphe montrent bien que les
trois premiers termes sont nuls et que le quatriéme l’est également pour
la méme raison parce que [£, J¢] est tangent aux feuilles, donc perpendi-
culaire a J{. Ainsi de Pexpression pour dw (&, JE, {) 1l ne reste que

dw(E,JED) = —o(JE, (1,89 —o({£],J9)
= — <[J&EO,JE> + <[(,E]L ¢ >
= — <Dy, JE> + <DJEJTE >
+ <D, 8> — <DL, ¢ >
= — <DL, JE> — <DL, E >

et c’est la trace de I'application de Weingarten W* qui est nulle par hypo-
theése. (Les deux autres termes dans l'avant-derniére somme sont nuls
par notre choix de & avec || & || = 1).

Démonstration du lemme 2. Comme nous [’avons déja remarqué,
la condition (7) implique dw (&, n,{) = 0si &, n, { € T .M sont linéairement
dépendants sur C. Traitons donc maintenant du cas ou &, 5, { sont linéaire-
ment indépendants sur C: Un changement linéaire des coordonnées holo-
morphes données nous en fournit de nouvelles pour un voisinage de x,

-

0 c
Zy = Xy T Yy e 2, = X, + iy, telles que & = F x),n = . (x) et
A1 A

0X,
3,
{ = —— (x) Prolongeons &, n, { par les champs de vecteur ——, = et
0X5 , 0x{ 0x,
0 , 0 0 0
—— Trespectifs. Alors J¢ = ——,etJn = —J( = —, d’aprés (1).
03 v o~ . Oy § J 0Y3

Soient maintenant &, #, { trois vecteurs quelconques parmi ¢, n, ¢,

JE Jn, JC. Alors, [E, 1] = [1,¢] = [(, £] = 0, et on obtient

~ ~ o~

dw(é,n,6)=g<5,JE> +5<C~,J5> +E<5,J71> (8)
D’autre part,
do(€+In,JE—n0) =do(&JED +dw(n, Iy, )
—dw(éansé)—dw(‘féa']naé)‘

Dans cette équation, le terme a gauche et les deux premiéres expressions
a droite sont nuls par I’hypothése (7), ce qui implique la relation

(qui, en effet, est équivalente a (7)).
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En appliquant (8) avec & = J 6,:1 = Jn,z = {, nous obtenons

Finalement on permute les vecteurs ¢, n, { de fagon cyclique et on
prend la somme des trois égalités ainsi obtenues:

3ddw(€,n,0) = —JE<n{>+In<{,{>—-(<&JIn>
—JIn<(,E>+Jl<én> —EE<n,J>
—J{<é&n>+JE<n{>—n<{,J¢>

= —dw(,n,0),

ce qui acheéve la preuve de dw (&, 5, () = 0.

Remarque. La démonstration du lemme 1 reste valable si I'on rem-
place ’ensemble de toutes les sous-variétés complexes locales de dimension 1
par une famille & suffisamment large: Les éléments de & doivent étre a
la fois des sous-variétés complexes locales de dimension 1 et des surfaces
minimales par rapport a la métrique riemannienne induite, et pour chaque
x € M et chaque vecteur tangent ¢ € T, M on doit avoir un feuilletage local
par des membres de la famille & de sorte que la feuille passant par x ait £
comme vecteur tangent. Ainsi il suffit par exemple de contrdler pour
une métrique hermitienne donnée sur ’espace projectif CP” que toutes
les droites projectives dans CP” sont des surfaces minimales par rapport
a la métrique riemannienne induite.
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