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11. Crass FIELD THEORY

Some of the origins of the cohomology of groups—specifically, the
factor sets for crossed product algebras—came from class field theory.
Hence it is not surprising that one of the principle uses of this cohomology
lies back in class field theory. Possibilities of this sort were in the minds of
Filenberg and Mac Lane when they wrote a paper applying cohomology
of groups along the lines of the earlier Teichmiiller work [1940] on 3-
cocycles. Mac Lane also recalls that Artin (about 1948) pointed out in
conversations that the cohomology of groups should have use in class
field theory. Hochschild [1950] and Hochschild and Nakayama [1952]
showed how the Brauer group arguments of class field theory could be
replaced by cohomological arguments. In 1952, Tate proved that the
homology and cohomology groups for a finite group G could be suitably
combined in a single long exact sequence. He used this sequence, together
with properties of transfer and restriction, to give an elegant reformulation
of class field theory. It is still today one of the effective approaches to this
subject—as presented, for example, in the recent book of Iyanaga and
Iyanaga [1975]. |

12. HOMOLOGICAL ALGEBRA

The discovery of the cohomology of groups was an essential part of the
development of homological algebra. This subject, as organized by Cartan
and Eilenberg, provides a unified way of accounting for a variety of new
functors, starting with the cohomology of groups. Such are:

H" (G, A), the cohomology of a group G, with coefficients in a left
G-module 4;

H, (G, 4), the homology of a group G, with coefficients in a right
G module A4;

H" (4, A), the (Hochschild) cohomology of an algebra A, with coeffi-
cients in a A-bimodule A4;

H"(g, C), the cohomology of the Lie algebra g, with coefficient in
a g-module C;

Ext (4, B), the group of abelian group extensions of the abelian group B
by the abelian group 4;

Tor (A4, B), the torsion product of the abelian groups 4 and B.
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The first three functors (and others like them) all arose from our immediate
subject, the cohomology of groups. The functor Ext is related since it
describes a group of group extensions, but it enters our story more directly
by its role in the universal coefficient theorem for homology; as found by
Eilenberg-Mac Lane on the basis of a problem of Steenrod about regular
cycles in metric spaces. Finally the Tor functor also came from the universal
coefficient theorem in homology—and the functor Tor (without the name)
first appears in connection with the universal coefficient theorem in a 1935
paper by Cech.

The decisive idea of homological algebra was the recognition that all
these functors—as well as the higher Ext" and Tor, (4, B) for modules 4
and B over a ring R—could be described uniformly as the »n'™ “derived”
functors of certain basic functors. Here the definition of derived functor
rests on the notion of a projective resolution, which comes directly from
the ideas of Hopf and Freudenthal on the homology of a group. For
example, in this case, one regards the additive group Z of integers as a
trivial Z-module, forms an exact sequence.

Z— Xy X+ X, X5+ ...
of projective left G-modules, tensors the result with A
A®GXO <« A®GX1 «— A®GX2 €— e

and calculates the homology of this complex in dimension n to obtain
H, (G, A). For these homology groups, this is exactly the procedure used in
Hopf’s second paper to describe the Betti groups which belong to the
group G—except that, as already noted, he did not have the tensor product
of G modules at hand. He used only the trivial G module 4 = Z, so he
could describe our tensor product Z ® ;X as the quotient X/X,, where X,
is the submodule of X generated by all the finite sums 2f,x; with x; in
X, f; in the group ring Z (G) and with augmentation o (2f;) = 0. In
exact sequence terminology, this amounted to using the augmentation « to

form a short exact sequence ]
1(G)>— Z(G) » Z,

forming from this the right exact sequence
I(G)®sX 2 Z(G) X 22X ->ZR®;X —-0

and hence getting Z ®;X as the stated quotient of X. For us, it is easier
now to use ®  directly—but Hopf’s treatment shows that the ideas could
still work without this explicit concept.
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As observed, the strength of homological algebra lay in using the same
method of resolution to describe derived functors of arbitrary additive
functors—and this use of resolutions, together with the comparison theorem
for different resolutions, came straight from the geometric properties of
covering spaces as used by Hopf in his original construction. The other
surprising aspect was the fact that homological algebra, formulated in
this generality, had extensive applications to ring theory, especially through
the consideration of homological dimension. It turned out that resolutions
had really appeared before: In Hilbert’s proof of his theorem on syzygies!

Actually, the complete theory of derived functors depends on the use
of both projective and injective resolutions. A module P over the ring R
1s projective if every morphism f from P to the codomain of an epimorphism
can be lifted to the domain as in the diagram

P
fr 7
- f
pd
//
£ e
A > B

in other words if B is the codomain of an epimorphism e, each f: P - B
factors as /= ef” for some f’. In particular, a free R-module is evidently
projective, so there are plenty of projective modules; in particular, every
module is a quotient of a projective module.

The dual notion is that of an injective module J. A left R-module J
is injective if every morphism f from the domain of a monomorphism can
be extended to the codomain; that is, if for each monomorphism m: 4 — B,
any f: A —» Jextends to an f': B — J with f'm = £, as in the commutative
diagram

A > ma»B

In this case the existence of injectives is not so evident, except in the case
of abelian groups (Z-modules) where the injectives are exactly the divisible
abelian groups. However in this case it was known that every abelian group
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could be embedded in an injective (i.e., divisible) abelian group. In 1940
R. Baer, using transfinite induction, proved that the same held for R-
modules over every ring. This was exactly the result necessary to construct
an injective resolution for any R-module.

In 1953, Eckmann and Schopf provided a new and much more perspi-
cuous proof that every R-module A4 could be embedded in an injective one.
They first embedded A, regarded as an abelian group, into a divisible group
D and then formed the double embedding

A>—hom (R, A)>— hom (R, D)

proving that D divisible meant that the hom (R, D) is injective. Going
beyond this, they observed that there was in fact a minimal way of embedding
A into an injective module J. Finding this depended on the notion of an
essential extension. A submodule 4 < B or a monomorphism 4 >— B is essen-
tial if for each submodule S of B, S n 4 = 0 implies S = 0; in other words
B o A is essential if every non-trivial submodule of B must actually meet 4
in some non-zero elements. From this definition it is not hard to see that
each module 4 has a maximal essential extension 4 >—FE. This maximal
essential extension now turns out to be the minimal injective extension of
A—a result of great beauty and use.

13. FunNcTorRs AND CATEGORIES

In another direction, the development of the cohomology of groups was
an essential preliminary to the formulation of the notions of category and
functor. Hopf’s discovery of the second homotopy group H, (G, Z) provided
a highly non-trivial example of a functor of G. To be sure, this functor had
been present before; in the form

H,(G,Z) = Rn[F,F]/[F,F] G = FJR,

it was in fact identical with Schur’s “multiplicator”—though any general
description of “functors” would have been unlikely at the time when Schur
was using his multiplicator in connection with projective representations.
However, in 1942 the mathematical atmosphere was different and more
ready for abstractions (thanks to the influence of Hilbert, Emmy Noether,
and others). Moreover, there were other prominent examples of non-trivial
constructions on groups which were functors—the group Ext (G, A) of
all abelian extensions of the abelian group 4 by G being one. Indeed, it was
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