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where A * acts on x and the double index, A * on y and the single index.

For A Ty this leads to the explicit formula

(1 _ I v |2)" + 1

y..,* y) -r—^-n—A (f > x) y..,k (?>) a (x, y).
[x9y]Zn

We note that y
9

(x, 0) y (x) and y_f< (0, y) — — (1 — | y |2)"+1 y (y).
We shall need to apply S to either variable in y (x, y). For this

purpose we introduce

Definition 3. rijthk{x,y) [S2yijt. (x, y)]hk.

Because differentiations with respect to x and y commute it is clear

that S * F ihk (x, y) 0. Moreover, starting from the relation g ik (x, y)
9ki (y> x) il is n°l difficult to derive the following symmetry property:

Lemma 2. p (y) FijM (x, y) p (x) Fhk>ij (y, x).

It follows, in particular, that S*p (y) F0- (x, y) 0.

It is also important to know the asymptotic behavior of riJ>hk (x, y)
when x - y -» 0. We observe first that

p(y)rijM(o,y) - (i-\y |2)—[s(i-\y \2)n+1yij,.(y)lk

~ SijM(y) + RijM(y)
where Sijfhk(y) [S yij}fiy)]hk is homogeneous of degree - n and

R-ij,hk (f) is homogeneous of degree 2 — n. The explicit expression for
Rij,hk O, y) reads

(i-l y I2)"
riU. (x> y) r 12

A (x' ^ r^'(0' T*y) J (^'•[x, y J

Elementary estimates show that

(7) I riJM(x,y) + SijM(x-y) | ^ Cn | x - y |1-" [x, y]-1
with constant Cn.

6. Potentials

Given an SM„-valued function v on B wç.define its potential as the
vector-valued function Iv with components

1V (y)k I Vy (x) yiJJt(x, >0 dx
B
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The integral converges if v eLp (B) for some p with n < p ^ oo. In fact,
one proves that

\Iv(y)\^cB>p IIV 11,(1-
ifp < oo and

\Iv(y)I^ Cn 11 v 11
oo

1 — I j71) (1 + log 1/1(1 - |y|)

if p — co. In any event I v (y) vanishes at a fixed rate for | y | -» 1.

The forming of the potential is an invariant operation in the sense

that IA*v A*I v for every A eG. The potential is harmonic outside the

support of v, for (5* p S)2 yijtm (x, y) 0.

The following theorem serves to recover / from Sf and its boundary
values :

Theorem 1. If SfeLp (B),p > n, then

(8) cj{y)- + cnHf(y)

with
1 r

Hf(y) -Cn v
Sil)

Moreover, Hf is the unique harmonic function with the same boundary
values as /, and if x -f 0 on S (1) it can also be written in the form

i f (i- \y\2)n+1
Hf(y) — \ '

,2„ A(x,y)f(x)da(x).
Cn J I * - y I

Sil)
Remarks, da refers to the (n— l)-dimensional measure on S(1), and

cn 2{n—\) cojn where œn is the total measure of S (1). We are assuming
that / has a continuous extension to S (1). Actually, this is automatically
true if we assume the side condition in the form x \f(x) -> 0 as | x | -> 1,

for it can be shown that SfeLp forces/to satisfy a uniform Holder condition.
The proof is a straight-forward application of Stokes' formula. The

passage from the difierentiable to the distributional case is elementary.
The fact that a harmonic function is uniquely determined by its boundary
values can be demonstrated as follows : Suppose that / is harmonic and

zero on S (1). It is readily shown that

I Sf(x)u yiJ<k (x) da 0
S(r)
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for all r. Therefore 75/(0) 0 and hence /(0) 0 by (8). If this result

is applied to (T"1)*/ it follows that f(y) 0 for arbitrary so that /
is indeed identically zero.

7. Computation of SIv

It is easy to show that SiJthk (y) (y)]hk *s a Calderon-

Zygmund kernel for any choice of the indices; in other words, it is

homogeneous of degree — n, and its mean-value over the unit sphere is 0. If
veLp, 1 < p < oo, it follows by the Calderon-Zygmund theory that the

principal value

pr. v. J vy (x)(x —
B

exists almost everywhere, and that it is the limit in Lp (B) of the

corresponding truncated integrals. In view of (7) it follows that the integral

(9) rv(y)hkJ v;; (x) r
B

will also exist as a principal value almost everywhere. One finds, however,
that the remainder in (7) makes it possible to assert merely that the

principal value is a limit in Lpf for any pr < p/n. In these circumstances

it is natural to assume that v eLp (B) for all p ^ 1.

Theorem 2. If v e Lp (B) with p > n, then SIv e Lp' (B) for
all 1 < p' < pin, and

(10) SIv — hnv + Tv

where bn 4 o)J(n + 2) and Tv is defined by (9).

Proof Let cp be an SMn-yalued test-function. The definition of SIv
as a distribution leads to the following formal computation :

I SIv(y)hkcp(y)hkdy- J Iv (y\S* cp (y\dy
B B

- J S* (p(y\dyIVy(x)yy
B B

- J" Vy (x)dxJS*(p(y)kyiJtk(x,y)dy
B B

- 1 Vy (t) dx[b„(pu(x)- J (p(y)hkrijM(x,y)dy~\.
B B
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