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where A¥ acts on x and the double index, 45 on y and the single index.
For A = T, this leads to the explicit formula

(1= |y Py™?
[X, y:IZn
We note thaty  (x,0) =y, (x)andy  (0,y) = — (1 —IJ’ lz)"ﬂ y.... ()

We shall need to apply S to either variable in y_  (x,y). For this
purpose we introduce

Vo (x,y) = Ay, %)y (T,x)A(x,y) .

Definition 3. I';; . (X, ¥) = [S27:5,. (X5 V)lnk

Because differentiations with respect to x and y commute it is clear
that ST I'._ . (x,») = 0. Moreover, starting from the relation g, (x, y)
= g,; (¥, x) it is not difficult to derive the following symmetry property:

LEMMA 2. p (0) T'ij o (X, 1) = p (%) I i (¥, x).

It follows, in particular, that S5 p (y) T ij... (x,y) = 0.
It is also important to know the asymptotic behavior of I';; ;. (x, )
when x — y — 0. We observe first that

p(¥) Fijw(0,9) = = (A= [y HT"[SA =1y )"y, )]
= == Sij,hk(y) + Rij,hk(y)

where S} .. (¥) = [S7:;.. (D] is homogeneous of degree — n and
R;; wi (¥) is homogeneous of degree 2 — n. The explicit expression for
I';; i (x, y) reads

=y
Iy, (x,y) = ——=5,— 40, ) I;.0, T,y)4(y,x) .
[x, y]
Elementary estimates show that
@) | Ui (X, y) + fSij,hk(x—y) | = Cn l,x, -y [xa)’:rl

with constant C,.

6. POTENTIALS

Given an SM,-valued function v on B we define its potential as the
vector-valued function Iv with components

Iv(y)y = 1; Vij(x)yij,k(xsy)dx-
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The integral converges if v € L? (B) for some p with n < p < oo. In fact,
one proves that

IIV(y)l = Cn,pHV“p(l_ lyl)l—n/p
if p < oo and

[Iv(») [ = ClIvIle (M= 1y D1+ log 1/[(1—|y])

if p = oo0. In any event /v (y) vanishes at a fixed rate for ]y | — 1.

The forming of the potential is an invariant operation in the sense
that 74*y = A*[v for every A € G. The potential is harmonic outside the
support of v, for (S* p S), y;;.. (x,») = O.

The following theorem serves to recover f from Sf and its boundary
values:

THEOREM 1. If SfelL? (B),p > n, then
(8) ¢, f(y) = —ISf(y) + ¢,Hf(y)

with

Hf(y) = cl J Vij,. (an’)xjfidG(x) .

n
S(1)

Moreover, Hf is the unique harmonic function with the same boundary
values as f, and if x -f = 0 on S (1) it can also be written in the form

1 1 — 2\n+1
Hf(y) = C—J : I I_J)J}I)Zn A(x,y)f(x)do(x).

S(1)

Remarks. do refers to the (n— 1)-dimensional measure on S(1), and
¢, = 2(n—1) w,/n where , is the total measure of S (1). We are assuming
that f has a continuous extension to S (1). Actually, this is automatically
true if we assume the side condition in the form x - f(x) > O as | x| - 1,
for it can be shown that Sf'e L? forces fto satisfy a uniform Holder condition.

The proof is a straight-forward application of Stokes’ formula. The
passage from the differentiable to the distributional case is elementary.
The fact that a harmonic function is uniquely determined by its boundary
values can be demonstrated as follows: Suppose that f is harmonic and
zero on S (1). It is readily shown that
j Sf(x)ij Vijk (x)do = 0

S(r)
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for all r. Therefore ISf(0) = 0 and hence f(0) = 0 by (8). If this result
is applied to (T,)* f it follows that f(y) = O for arbitrary y, so that f
is indeed identically zero.

7. COMPUTATION OF Slv

It is easy to show that S .. (») = [Sy;,. (W is a Calderon-
Zygmund kernel for any choice of the indices; in other words, it is homo-
geneous of degree — n, and its mean-value over the unit sphere is 0. If
vel?, 1 <p < oo, it follows by the Calderon-Zygmund theory that the
principal value

pr. v. j vij(x)sij,hk(x_y)dx

B

exists almost everywhere, and that it is the limit in L? (B) of the corre-
sponding truncated integrals. In view of (7) it follows that the integral

9) Iv(y)w = ,1‘; Vij (x) Ly (x,y)dx

will also exist as a principal value almost everywhere. One finds, however,
that the remainder in (7) makes it possible to assert merely that the
principal value is a limit in L?’ for any p’ < p/n. In these circumstances
it is natural to assume that ve L? (B) for all p > 1.

THEOREM 2. If velL? (B) with p > n, then SIveLP (B) for
all 1 < p' < p/n, and

(10) SIv = —by + Iv
where b, = 4 w,/(n+2) and T'v is defined by (9).

Proof. Let ¢ be an SM,-valued test-function. The definition of SIv
as a distribution leads to the following formal computation:

iSIV(y)hkqo(y)hkdy = — iIV(y)kS*q)(y)kdy
= — J S* @ (y)dy ivij(x)vu,k(x,y)dx
- ivij(x)dx J} S*@(Y)k)’ij,k(x»y)dy

= = Jl;vij(x)dx [b, @i (x) — 1!- @ (Ve Tijuc (%, y) dy] .
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