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1. Points of finite order on elliptic curves

Let E be an elliptic curve over the complex numbers with origin o. In
practice E will have various realizations as an algebraic curve defined by

polynomial equations in projective space; e.g., as a plane cubic, the
intersection of two quadrics in P3, etc. All of these projective models are bira-
tionally isomorphic to the given curve E. It is well known that E admits a

commutative group law with o being the identity, and we are interested in
the points p of finite order n defined by

np o

where np p + + p (n times). Specifically, we pose the question of
finding a projective model of E relative to which these points have a simple
explicit description.

From a complex-analytic point of view we may realize E as the Riemann
surface

E C\A

obtained by factoring the complex w-plane by a lattice A with u 0 projecting

onto the origin o; this is a consequence of Abel's theorem1). The

group law on E is obtained from the additive structure on C, and so if
u0 g C projects onto p eE the finite order condition is

(1) nu0 0 modulo A

In particular there are n2 points of finite order n on E corresponding to the
points of

1

- A.
n

Our problem may be generalized to that of giving projective meaning to
the equation

(2) ux + + un 0 modulo A

which specializes to (1) when the ut tend together. Here again the basic step
is the following variant of Abel's theorem 2) ; Given uh vt g C (z 1, n)

x) This is the classical version of Abel's theorem used in 1).
2) C.f. L. Ahlfors, Complex Analysis, McGraw-Hill (New York), Exercise 2 on

page 267. This may be thought of as providing a converse to the classical Abel's theorem.

L'Enseignement mathém., t. XXIV, fasc. 1-2. 3



— 34 —

there is an entire meromorphic function f{u) with period lattice A and

having zeroes at ut + A and poles at vt + A if and only if
uA + + un ~ v1 + + vn modulo A

It follows that the vector space H° {f)E ([wo])) of rational functions on E
having a pole of order at most n at o, or equivalently the entire meromorphic
functions /(u) which have period lattice A and a pole of order at most n at
u 0, has dimension n. If we choose a basis fl9 ...,/n for this vector space,
then for n ^ 3 the mapping

F(") [/i(w), •••,/„(«)]

induces a projective embedding

E -P"-1
whose image is easily proved to be a smooth algebraic curve of degree n.

Thus, for n 3 we have a plane cubic, for n 4 the intersection of two
quadrics in P3, etc. In general we shall call the image the normal elliptic
curve of degree n. According to Abel's theorem the hyperplane sections of
this curve, which are just the zeroes of functions /e H° (f)E ([wo])), are
characterized by uv + + un 0 modulo A. Put differently, the condition
(2) is equivalent to

(3) det ||/;(«;) II 0

expressing the failure of the points F (wt), F (u„) to be in general position.
If we denote by

/l(w) •••/»(")

WF (u)

fi(w) /»

fy-'Ku)

the Wronskian of the functionsf (u), then by letting the ut tend together the

condition (3) specializes to the equation

(4) WF(u) 0

characterizing the solutions to (1). Points satisfying (4) will be called hyper-

flexes, and what we have shown is that:
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The points oforder n on an elliptic curve are precisely the hyperflexes of
the normal elliptic curve of degree n.

Now we observe that the equation (4) is independent of the selection of
basis {f} and local coordinate u on E. To see therefore whether or not a

given point p is of finite order n we will make convenient choices. Namely,

we may choose a basis { 1 ,f(u) } for H° (&E ([2o])) such that f(p) 0.

In other words, the function / induces a 2-to-l map

(5) f:E
with pe/_1(0). It is well-known that the representation (5) has four
branch points, one of which is the point at infinity with /_1 (oo) o.

If we let x be the coordinate on P1 and a, b, c the finite branch points, then

E is conformally represented as the Riemann surface of the algebraic function

y/ (x — a) (x — b) (x — c).

Put another way, the plane cubic curve with affine equation

(6) y2 (x — a) (x — b) (x — c)

gives a projective model of E. Setting x — f (w), since the holomorphic
differential du is a constant multiple of dxjy it follows that, with a suitable

df(u)
normalization, 2y f (u)

du
Consequently the projective model

(6) of E is given by the mapping E P2 associated to the basis

{ 1,/(«),/' («) } of H° (f)E ([3o])). Of course,/(w) andf (u) are essentially
the Weierstrass functions. We recall that that their Laurent series around
u — 0 are

f(u) —+...

(7)

f'iu) -2
u3

+

Returning to our question of whether ~1 (0) is of finite order n,
we will use x / (u) as local coordinate around p and choose the functions
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(8)
5 xm; y, xy,xm 1y n 2m + 1

n 2m

1
5 X j

1, x, xm; xy, xm~2y

as basis for H° ((9E ([/?o])). That this choice gives a basis follows from the

Laurent series (7). It is now an easy matter to express the Wronskian equation

(4) at x 0.

dg (x)
We consider the case n 2m + 1 and let

dx
be the derivative of

g (x) evaluated at x 0. The choice of basis (8) facilitates the evaluation
dk (xl)

of the Wronskian. For example, from
dxk

0 for k > I the Wronskian

has the form

1 0

0 ml

\ 0 0

I 0 0

so that (4) is equivalent to

(9)

; dm+1y dm + 1{xy) dm+l(xm~1y)

j dxm+1 dxm+1 dxm+1

;
dm+2 dm+2(xy) dm+2(xm~1y)

1 dxm+2

1

dxm+2 dxm+2

1

d2my d2m(xy) d2m(xm"V)
j dx2m dx2m dx2m

0
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If the series expansion of y (x) is

then (9) is

y(x) S
k — 0

(m + 1)! Am+1(m + 1

(m+2)! +m+2 (m + 2)! +m + 1

(m + 1)! A2

(m + 2)\A 3

(2m)! +2m (2m)! AZm_1

In summary we have proved

(2m)! Am + 1

0,

(10) Let E be an elliptic curve with origin o and peE a given point.
Then p is of finite order n o the following condition is satisfied :
Choose rational functions x, y on E having poles of respective orders

2, 3 at o but which are regular elsewhere and with x (/?) 0. Then

there is an equation y2 (x — a) (x — b) (x — c) where a,b,c are
distinct and non-zero, and we write

y J (x-a)(x-by Akx
k 0

The finite order condition is

A2 ^3 • ' ' A m + 1

^3 A4 •• Am + 2

Am + 1 A m + 2 * •• ^2m

^3 a4 •• Am+1

A5 •• Am + i

| Am+1 Am+2 - ^2m

0, n 2 m + 1

0, n — 2n.
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