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for a sequence of r tending to oo. This had been conjectured by Little-
wood [8] who proved the corresponding theorem with cos (2nX) instead

of cos (7iA). The result is valid for 0 < A < 1.

If 1 < A < oo, Littlewood [8] also proved that there exists a positive
constant C (A) such that

fi(r) > M (r )~c(A)_£

for a sequence of r tending to oo. However the correct value of C (A) is

unknown for A > 1. It turns out that the formula (1) with exponential
factors is much harder to work with than (2). Wiman [11] conjectured that
C (A) 1 for A > 1, a result which is true if /(z) has no zeros. Later
Beurling [1] proved a corresponding theorem for the case when/ (z) attains
its minimum on a ray. Nevertheless Wiman's conjecture is false and the

correct order of magnitude of Littlewood's constant C (A) is log A as A -» oo.

For infinite order the corresponding Theorem is [4].

(6) fi(r) > M (r )~Alog log log M<r>,

where the best value of A lies between .09 and 11.03.

Since the theory of /i (r) is thus rather unsatisfactory for A > 1 it is

natural to consider other cases of E. Suppose first that F is a ray arg z 6

and that K > 1. Then Beurling [1] showed that if
(7) \f{reid) \ < M(r)"*,
for 0 < r < R, we have

l/(z) I <1, I z I C,{K)R,
where the constant Ct (.K) depends only on K. If R can be chosen arbitrarily
large, we deduce at once that /(z) is bounded on a sequence of large circles
I z I CXR, so that / is constant by Liouville's theorem. Thus for non-
constant / (7) cannot be true for all r (or all large r) and a fixed 0.

2. The case when E is a curve

It is natural to consider the case when E is an unbounded connected
set or equivalently a curve going to oo and this is the topic I mainly wish
to discuss today. By a rather involved method I had shown [4] that in
this case

(8) |/(z)| > M (r)~Ao
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for some arbitrarily large z re16 on E. Here A 0 is an absolute but
presumably very large constant. I had conjectured that the result holds for
any A0 > 1. Soon afterwards Beurling showed Kjellberg in a conversation
that (8) holds for any A0 > 3. Beurling's argument is as follows.
We write

B (r) log+ M (r max {0, log M (r )} B (z) B (|z|)

and suppose that for some K > 1, we have

(9) log |7(z) I < - KB(z),
on a Jordan curve T joining z 0, z0 Rel9. Then we deduce that

K - 1

(10) log |/(re )|< —B(r), 0 <r<R.
To see this we suppose that 5: [rl5 r2] is a maximal interval such that re16

does not lie on T, for rx < r < r2. Let y be the arc of JT with end points
r1ew, let Z> be the domain bounded by y and S, D* the reflexion
of D in S and A Du.Su D^. In zl we consider the function

u{z) log \f(z) \ + log |/(z*)| +(£-l)£(z)
where z* is the reflexion of z in S. Clearly u (z) is subharmonic in A and,
for z on the boundary of A, either z or z* lies on T. Thus

u (z) < 0

in A and in particular on S. We deduce that

2 log I / (reie) I < - (K - 1) B (r r± < r < r2

and this yields (10). Hence if X > 3, we deduce that / is constant from
Beurling's theorem.

Recalling his earlier conversation with Beurling, Kjellberg went on to

prove 18 months ago that (8) holds for any A0 > 1 at least when/has finite
order and I managed to extend the result to the case of infinite order.
Our joint paper will be published in the Turan memorial volume. I should
like to describe briefly the idea behind this proof.

3. An extended reflexion principle

Let us return to the above reflexion argument. We assume now that (9)
holds on some curve r going from 0 to oo, where K > 1. Then the reflexion

principle shows that
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