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(1.10) and Lemma 1.2 yield

Y ) o).

1.11) 6, = (Tr o),
(11D L |G|NG —

| G | aeG
Multiply both sides of (1.11) by #™ and sum over m from 0 to oo. We get

S o= Y Y Y et
m=0 | | m=0 og&G la]=m
1 0 0
e i—a Y {) o' (o)™ ... Y w, (o)™}
| oeG m=20 ) m=20 .
1 4 1
1G| :{‘G (1—wy(0)1) ... (1 —w,(0)1)
CHAPTER 1I

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. CHEVALLEY’S THEOREM

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where » = dim V. We show that

this lower bound is attained only for the finite reflection groups. We first
define these groups.

DerINITION 2.1. Let ¢ be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <> ¢ fixes an n — 1 dimensional

hyperplane n and o 1s of finite order > 1. = is called the reflecting hyper-
plane (r.h.) of 0.

REMARK. Choose v ¢ 7. and let ov = (v + p, pen. If { = 1, then
o™y = v + mp, contradicting that ¢ is of finite order. Hence { # 1.
Let o' = v + (Zj—l)‘lp and choose py, ..., p,—, as a basis for n. Then
op;=p, 1 <i<<m—1,0v" = {v'.{isaroot of 1 in k which is distinct
from 1, as o i1s of ﬁmte order > 1. Thus o is a reflection iff relative to some
basis, the matrix for ¢ is diagonal, n — 1 of the diagonal entries equalling 1
and the remaining one equalling a root of 1 in k distinct from 1.




1 X, X; (i#)) fixes the hyperplane x; — x; = 0, so that it is a reflection.
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DEFINITION 2.2. G is a finite reflection group acting on V < G is a
finite group generated by reflections on V.

As an example of a finite reflection group, let G = §,. It is well known
that S, is generated by transpositions. The transposition of the variables

We have the following result

THEOREM 2.1 (Chevalley [4]). Let G be a finite reflection group acting
on the n-dimensional vector space V. The invariants of G have a basis
consisting of n homogeneous elements which are algebraically independent
over k.

Let k [x] denote the ring of polynomials in X, ..., x, with coefficients
in k. We prove the following. |

LemmA 2.1. Let I, ..., I,, be invariant polynomials of G, fl ¢, ..., 1,)
= the ideal in k [x] generated by I,, ..., I,. Suppose that P, I, +
+ P, 1, = 0, the P’s being polynomials with P; homogeneous. Then
P, e #, where £ is the ideal in k [x] generated by the homogeneous in-
variants of positive degree.

Proof of Lemma 2.1. The proof proceeds by induction on deg P;.
Suppose deg P, = 0, so that P, = cek. If ¢ # 0, then I, € (I, ..., 1),
contrary to assumption. Hence ¢ = 0 = P, e #. Let degP, = n > 0.
Let o be a reflection in G and L = 0 the equation of its r.h. (L is a linear
homogeneous polynomial). We have P, (x) I, (x) + ... + P, (x) [, (x) =
P, (ox)I{ (x) + ... + P,(6x) I, (x) = 0. Hence [P;(ox)—P;(x)]I; (x)
+ ... + [P, (6x)—P, (x)] 1, (x). For L(x) =0, a(x) = x, so that
P,(ox) — P;(x) = 0 whenever L(x) =0,1 <i<<m. Smce L(x) is
irreducible it follows that

P; (ox) — P; (x)
L(x)

is a polynomial, 1 < i < m. We have

[pl (ox) — Pl(x)] L) 4 o+ I:Pm (ox) — P, (x)] I () = 0.

L(x) L (x)

e

d Py (ox) — Py (x)
* [ L)

] < deg‘Pl(fx)"

so that by the induction hypothesis
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Py (ox) — Py (x)
L(x)
Hence P, (ox) = P, (x) (mod #). Since the ¢’s generate G, this con-
gruence holds for o € G. We conclude that

= 0 (mod J).

P, (x) = —é—— Y P, (ox) (mod .#).

I ceG

The polynomial — Y P, (ox) is invariant and homogeneous of
oeG
degree n > 1. Hence it € 4, so that P, € £.

Proof of Theorem 2.1. We choose I, ..., I, to be homogeneous in-
variants of positive degree forming a minimal basis for #. Hilbert’s proof
of Theorem 1.1 shows that 7., ..., I, form a basis for the invariants of G.
We show that 7, ..., I, are algebraically independent, so that r = .

Suppose, to the contrary, that 7,, ..., I, are algebraically dependent.
Choose H (y4, ..., y,) to be a polynomial of minimal positive degree so
that H (I (x), ..., I, (x)) = 0. Let x-degree of any monomial y{' ... y*" be
dya, + .. +d a, where d, = deg I,, We may assume that all x-degrees
of the monomials appearing in H are the same. Let

0 H
H;(x) = a—y(ll(x),...,lr(x)), 1 <i <r.

The H;s are invariant homogeneous polynomials, as all monomials in H
have equal x-degree. Since H (y,,...,»y,) is of positive degree, some

0 H .
7 # 0, It follows that the corresponding H; (x) # 0, as H was chosen
Vi

to be of minimal degree; i.e. not all H,'s = 0. We relabel indices so that
Hy, .., H,1 <s <r, are ideally independent (i.e. none of the H,'s is in

the ideal generated by the others) and H, ;e (Hy, ..., H). 1 <j <r — s.
Thus Hyy; = ) V;H,1<j<r—s where each V,;is a homo-
i=1

geneous polynomial of degree d; — d,; (V}; is interpreted to be 0 if this
degree is negative). Differentiating the relation H (I (x), ..., 1, (x) =
with respect to x,, we obtain

’ oI, o 0 * o0l

(2.1) >, H =) H i +ri Hg,

i=1 a i=1 a axk—_

Z 165 rZS “S”] =0

Xk
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Since

" als-i-l

LI

is homogeneous of degree d;, — 1, we conclude from Lemma 2.1 that

r—s ] a]s r
Vi = Y BT, 1<i<s,

J g2

0 X, 0 Xy

(2.2)

5xk F=3

where the B;’s are homogeneous and each term in (2.2) is homogeneous of
degree d; — 1. This forces B, = 0. Multiply both sides of (2.2) by x, and
sum over k. We conclude, by Euler’s identity for homogeneous polynomials,

¥—s

(2.3) dil; + ), ViderIoo = Z A;l;

=1 J=1

the 4,’s being homogeneous with 4; = 0.

(2.3) shows that I,e({,....,1;,_{, 1,44, ..., 1), contradicting the mini-
mality of the basis /4, ..., I,. Hence 74, ..., I, are algebraically independent
and r = n.

2. THE THEOREM OF SHEPHARD AND ToDD

We obtain in this section a converse to Chevalley’s Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection
groups. We first prove several preliminary results.

LemMA 2.2. Let H be a finite group of linear transformations acting on
the n-dimensional space V' and fixing the » — 1 dimensional hyperplane 7.
The elements of H have a common eigenvector veV — . Let g (v) =
{(6)v, o0 € H. { (o) is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that H is a cyclic group.

ReMARK. The above lemma is a consequence of Maschke’s Theorem
proven in section 2.3. We provide another proof below.

Proof. Let o, € H, 6, # e (the identity of H). By the remark following
Definition 2.1, there exists v € ¥ — & such that o, (v) = {; v, {; being a
root of unity # 1. For ce H, let 0 (v) = {(6)v + p(0), {(6) ek and
p(@)en. Leto* =0,7 06" o, 0. Then o* (v) = v + (1—{,) p (0). Since
a* is of finite order, (1—{,)p (¢) = 0 = p (o) = 0. Hence o (v) = { (o) v.

{ (o) is clearly an isomorphism from H into U, the multiplicative group of
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the roots of unity in k. U is known to be cyclic ([22], Vol. 1, p. 112). It
follows that { (H), a subgroup of U, is cyclic and so H is cyclic.

THEOREM 2.2. Let G , be a finite group acting on the n-dimensional
space V. Let I,,...,I, be homogeneous polynomials forming a basis for
the invariants of G. Let di, ...,d, be the respective degrees of 1, ...,1,.
Then

(2.4) Il 4 =1Gl, ) =D =7

where r = number of reflections in G.

Proof. By Theorem 1.2, I,,..., I, are algebraically independent. Let
I (x) be a homogeneous invariant of degree m. Then / is a linear combination
of the monomials 79" ... I, where a, d; + ...a,d, = m. Furthermore,
these monomials are linearly independent over k, as I, ..., I, are algebraically
independent over k. It follows that the dimension §, of homogeneous
invariants of degree m = number of non-negative integer solutions to
a,d, + ...+ a,d, = m. Hence

1
O, t" =

(2.5) - , .
0 (1—=tYH... (1 ="

1M1 8

m

(1.9) and (2.5) yield

1 ! !
6) N
FO 61 &m0 @) (=0, 0) ~ q—i . (1=

Expand both sides of (2.6) in powers of (1—1¢). Let # = set of re-
flections in G and { (¢) = eigenvalue of the reflection ¢ which # 1. We have

1 1
(27) —I_GT oeG (1 _wl)(O') [) (1 '—'C()n(O') Zj
_ 1 1 1 I 1 1
Gia—0 TT6 2 1=t a-y T
1 n .
(2.8) o
(1—td1) ...(1——1”) ]';I d(l—t)_(z)(l—t)z . i‘(l—t)di

q | (d;—1)
— " — +

;
I d: =2y H (1 -1y
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Equating coefficients of (2.7), (2.8), we get

—1
1 —{(0)

(2.9) [l d=16I, ¥ @-1)=2
i=1 i=1 oe R
We evaluate the sum

1 .

L 1 —{(o

o

Let © be any r.h. Let H, = {¢ | 0 € G and ¢ fixes n}. Thus H, is the sub-
group of G consisting of the identity and those reflections in G with r.h. 7.
Applying Lemma 2.2 to H,, we conclude that there exists v ¢ = such that
() = {(c)vforce H,. Let H, = H, — {e}.Since { (") = ({ (o))",
we obtain

1 1

(2.10) y =%

af:H;r 1 - C(O’) aeH/n 1 - C (0-_1)

: 1 1
J— 1'— — ' —_— e
- LU ) e = 2

oeH

Hence

(2.11) Y

oeH

1 | H, |
1 =) 2

Summing both sides of (2.11) over all r.h. ©, we get

1 r
(2.12) | 082% m = 5 -

(2.9), (2.12) yield Theorem 2.2.

THEOREM 2.3. Let f1, ...,[f, be polynomials in the variables x, ..., x,.
f1s .o, [, are algebraically independent over k <

0 (f1s - o)
0(X15 .ees Xp) >0

Proof. Suppose that f,,...,f, are algebraically independent. Then
G(fi, ....f,) = 0 for some polynomial G = G (yy, ..., y,). Assume that
G (yy> .-, ¥s) is of minimal positive degree. Differentiating this relation

with respect to x;, we get




0
2.13 — (f1s eos S =0,1<j<n
(2.13) izZl ayi(fl f)aj J<
(2.13) is a system of linear equations (with coefficients in k£ (x, ..., X,))
0G 0G
in the unknowns H; (x) = ™ (f1s s S)y 1 <7< n. ™ # 0 for some i,
Vi i

< deg G. It follows that the corresponding

as G is not constant, and deg
i

H; (x) # 0. Thus the linear system (2.13) has a non-zero solution, so that

its determinant

0(f1s s f) 20
0(X1,.ees X ) '

Conversely, let fi,...,f, be algebraically independent. For each i,
X f1, - fy are algebraically dependent. Hence there exists a polyno-
mial G; (x;, »4 ..., ¥,) of minimal positive degree in x; such that
G;(x; f1, - f,) = 0. Differentiating these relations with respect to x,, we get

n af
(214) Z ( l’fl"")fn) —?
j=1 0 X

Jd G;
+ (xiafla-- f)élka < < ’
0 X

0y denoting the Kronecker symbol. (2.14) may be rewritten in matrix
notation as

0GN [f\
219 (#) (55) =

where the entries of D are

3 0 G,
S 5%,
0G;
det D # 0, as x; — degree of Tx < x; — degree of G;, 1 < i < n.
Xi
o o(fy, ...
It follows from (2.15) that U, 00 Jo # 0.
0(Xq1,y ..y X,)

THEOREM 2.4. (Shephard and Todd [19]). Let G be a finite group
acting on the n-dimensional space V. Suppose there exists a basis of n
homogeneous polynomials for the invariants of G. Then G is a finite
reflection group.




Proof. Let H be the subgroup of G generated by the reflections in G.
By assumption G has n basic homogeneous invariants which, by Theorem 1.2,
are algebraically independent. Since H is a finite reflection group, we
conclude from Chevalley’s Theorem that H has »n basic homogeneous
invariants J4, ..., J, which are algebraically independent. Each I; is in-
variant under H so that I, = I, (J4, ..., J,), the latter quantity denoting a
polynomial in the J;’s. We may assume that 7; (J4, ..., J,) is a linear com-
bination of monomials J;! ... J,” whose x-degree = deg I;. We have

oIy, ..., I,) oy, ..., I,) 0y, ...sd))

(2.16) =
0(Xqy.0r X,) 0J, ..., J,) 0(Xy, .eer X,)

By Theorem 2.3,

o, ..., I,
(14 ) 20
O0(X1y euny Xp)
and (2.16) then shows that
o, ..., I,
s ) %0
0Jyy..0sd))
It follows that there is a rearrangement k, ..., k, of 1, ..., n so that
0l 01
ko,
0 Jy 0J,

Hence I, (Jy,...,J,) 1s of positive degree in J; and deg I, > deg J,,
1 < i < n. Applying Theorem 2.2 both to G and H, we obtain

i=1 i=1
(2.18) Y (degJ;—1) = > (degl;—1) =r
i=1 i=1

where » = number of reflections in G = number of reflections in H
Since deg/,, > degJ;, 1 <i<n, we conclude from (2.18) that

deg [, = deg J;, 1 <i <<n. Hence [] degl; = [] deg J;, and we
i=1 i=1

conclude from (2.17) that |G| = | H|. Thus G = H and G is a finite
reflection group. *




— 253 —

oy, ..., I,)
0 (X1, ey X)

3. A FORMULA FOR

We obtain a formula which shall be used in Chapter III.

THEOREM 2.5. Let G be a finite reflection group acting on the n-
dimensional space V. Let I,, ..., I, be a basic set of homogeneous invariants
for G. Let x be a coordinate system for V and L;(x) =0,1 <i <,
the r.h.’s for G, each L; being linear and homogeneous. Then

oIy, ..

(2.19) T ) 1]1 L;(x)

¢ being a constant # 0.
Proof. Let J the left hand side of (2.19). We observe that J is a non-zero

homogeneous polynomial of degree > (d;—1). By Theorem 2.2,
i=1

Y (d;—1) = r, so that deg J = r. If k is the real field R, we have the
i=1

following simple proof of (2.19). I, = I, (xq, ..., X,,), | << i < n,1s a mapping
from x-space to I-space. This mapping is not 1 — 1 in any neighborhood
of a point x lying in the r.h. L; (x) = 0, as any point and its reflection get
mapped into the same point I. It follows from the Implicit Function
Theorem that J (x) = 0. whenever L;(x) =0. Thus L; | J, 1 <i <,

and so H L, |J Since J, H L; have the same degree r, we have

J=c H L; ¢ #0.
=1

For an arbitrary field k, the theorem is proven as follows. Let © be
an r.h. with equation L (x) = 0 and H the subgroup of % elements in G
fixing n. Thus there are 4 — 1 reflections in G with r.h. 7. We show that
Lt | J. By Lemma 2.2, H is a cyclic group generated by an element o.
Furthermore there exists v ¢ 7 and a primitive A-th root of 1 such that
o (v) = {v. Choose a coordinate system y = (y, ..., y,) in ¥V so that =
has the equation y, = 0 and v = (0,...,,0,1) o then becomes the trans-

formaﬁon (yla . >yn 1» .)) _?(yla ) yn—lacyn)' Let X = Ty and Ji (y)
= [;(ty), 1 <i<n. We have

(220) Ji(yla“'ayn~1>Cyn) = J.i(yla"'ﬂyn—-inyn)a 1 <l <n
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Let J; =) A,)y, the A4,’s being polynomials in y,, ..., y,_;.
(2.20) implies that 4,, = O whenever 2}/ m, sothat 4, = 0,0 <m < h — 1.
Since

J,
=X, A,yn ',

OVm
we conclude
0J,;
J’Z—l - ’ \l hn
0 Yy
Hence
0(Jys....d,,
(2.21) ypt |2,
a(yl’“'syn)
Since
o(Jy, ..., J,
f )=J(x)-detr,
a(yla'“: yn)

(2.21) is equivalent to L"™'(x)|J(x). It follows that if L;(x) = 0,
J. But J, [ L; have the
i=1

1 <i<r are the r.h.’s for G, then [] L,
i=1

same degree r, sothat J = ¢ [] L;c # 0.
i=1

4. DECOMPOSITION OF FINITE REFLECTION GROUPS

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

DEerINITION 2.3. Let the group G act on V. G is said to be reducible
iff there exists a proper subspace W invariant under G; i.e. o we W for
ceG, weW. G is said to be completely reducible iff V=V, @ V,,
V', and V, being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

THEOREM 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof. Let V' be a proper invariant sﬁbspace of V. Let V', be a comple-
mentary subspace. Thus for veV, we have a unique decomposition
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1 _
v =v, +v,0,€V;(i=1,2). Letnv = v, and set T = Gl gc ono L.

7 satisfies the following:

1 _
yto =o01,0€0. Foror=|————l Y oo,n(ooy) o =10
6.eG

ii)to, = 0,v,eV,. For ¢ 'v eV, 0€G, so that no~
=10, =0

iii) (1—7)v e V,, veV, 1 denoting the identity of G. For (1—n)ve ¥V, so
that (1-n)e ‘veV, =>0(l-n) o 'veV,;,0eG. It follows that

vy, =0

(l—r)v=ré—l Y o(l-mo tveV,.
aeG

Let ¥V, = 7 V. V, is invariant under G as ¢ (tv) = 7 (ov). For any v,
v = tv + (1—1)v. It follows from iii) that ¥ = ¥V, + V;. ii), iii) imply
t(1-1) = 0 <>t = 72, Hence tv, = v, for v,eV,. Let v; + v, = 0,
where v, € V,, v5 € V,. Applying t to both sides, we get v; = 0 and so
v, =0.Hence V=V, @ V.

Repeated application of Maschke’s Theorem yields the

COROLLARY. Let G be a finite group acting on the finite-dimensional
vector space V. Then V =V, @ .. @V, the V,'s being invariant sub-
spaces of V and G acting irreducibly on each V.

For finite reflection groups, we have

THEOREM 2.7. Let G be a finite reflection group acting on V. There
exists a decomposition V =V, ® .. ®V, into invariant subspaces such
that :

1) Let G, = G |Vi = group of restrictions of elements of G to V. Then G
is isomorphic to G, %X ... X Gy

2) Each G, 1 <i<s, is a reflection group acting irreducibly on V.

14

Proof. By the corollary to Theorem 2.6, there exists a decomposition
V=V, ®&..a®V, the Vs being invariant subspaces and G, irreducible
for 1 < i <s. We label the Vs so that V, ..., V, are 1-dimensional and
G |VL. = identity.

By the remark following Definition 2.1, for each reflection o there exists
an eigenvector v € V' — m, © being the r.h. for ¢. Call v a root of G. We have

(2.22) dim (V;+n) + dim (V;nn) = dim V; + dim =« .
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If V; &€ =, then V; + = = V and we conclude from (2.22) that dim V,
= dim (V;nn) + 1. Le. ¥; n 7 is a hyperplane in V; and ¢ |,, a reflection
on V;. Choose u € V; — = so that u is an eigenvector of ¢. u is a multiple of
the root v, so that v € V,. Thus ¢ IVi is a reflection of V; if v e V,, and the
identity if v ¢ V;. Furthermore, each root v is in some V,, r + 1 < i < s,
otherwise the corresponding reflection ¢ would have been the identity.

Let G; = subgroup generated by those reflections whose roots are in
Vo 1 <i<s. Itis readily checked that G = G, x ... x G, G; = G, |..

IfoeG;,and o IVi = identity then ¢ = identity. The mapping ¢ — ¢ ]Vi is

thus an isomorphism from G; onto G,.

THEOREM 2.8. Let G be a finite reflection group acting on "V and de-
compose V as in Theorem 2.7. Every polynomial invariant under G is a
polynomial in the invariant polynomials of G, ..., G,.

Proof. ForeachveV, writev = v, + ... + v, v;€ V;. By Theorem 2.7,
for each ¢ € G, we may write 6v = ¢, v, + ... + 0,9, 6;€ G,. For any

SNS7
polynomial function p (v) on ¥V, we have p(v) = > p;; (vy) ... pis (V)
i=1

where p;; (v;) is a polynomial function on V. If p (v) is invariant under G,
then

1 N
(2.23) p(v) = — Z p(ov) = Z Iy (v4) ---Iis@s)
l Gl ceG i=1
where .
: {
(2.24) I;(v;) = Z pij (o))
' ’ Gjl 0jeGj

is an invariant of Gj.

CHAPTER 1III

THE DEGREES OF THE BASIC INVARIANTS

We determine the degrees of the basic homogeneous invariants in case
G is a finite reflection group. We present two different methods. The first
one (Theorem 3.8), restricts itself to the case where k is the real field and
has the advantage of providing an effective method for computing the
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