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§ 2. The Lefschetz trace formula for the c.f.p. index

This reduces to the classical Lefschetz-Hopf theorem if B — a point,
or if p : E B. Our assumptions in 2.1 are a little more restrictive than

necessary, in order to facilitate the proof; a slight generalization is indicated
in 2.8.

(2.1) Theorem. Let p:E-> B be an ENRB, where B is a compact
ENR. Let g : Dg -> E, cp: D(p -> B denote maps as in 1.1 such that Fix (g)
is compact, and Dç id Fix (g). Then the c. f.p. index of (,g, cp) agrees with

V V
the Lefschetz trace of the composite hB —-> h Fix (g) > hB, or

* tD
hB — hD > hB, where t tg is the fixed-point transfer (cf. [2], § 3), D

V V
w any neighborhood of Fix (g) in D(p, h is singular and h is Cech-

cohomology with coefficients in Z or Q. In formulas,

(2.2) J(9,9 tr(tg09) tr(tgoq>*).

Proof. Using a vertical neighborhood retraction we can assume that
E — R" x B; this is, in fact, what the definition 1.6-1.9 shows (if 7= R").
Then g (y, b)(y (y,b),b), where R", and J(g, 9) I(y,
as explained in 1.12. Furthermore, since B is ENR, we have 1: B cz c Rm

and a retraction p:U-»B,whereU is open in Rm. We can then extend

9, y, g to maps 9, y, g of open subsets of R" x c R" x Rm by composing

with idx p : R" x U Rn x B. The fixed points of (y, 9), (y, 9) (and

their index) are the same, by commutativity [1], VIII, 5.16 — since (y, 9)
(id* 1) (y, 9) (id* p).Altogether (omitting the ~), we can assume that

9, y, gare defined in open subsets Dv, of R" x U, 9: B
c - U, y: Dg-»• R", => Fix (g), Fix (g) is (no longer compact but) proper
over U; in particular, K Fix (g) n (p~ \B) is compact.

We now argue in a similar (although simpler) fashion as on p. 241 of
[2], We consider the following diagram (explanations below).
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Here, R" (R", R" - 0), I is an open neighborhood of Fix (g) in
which y and cp are defined, K= Fix(g) n (p~xB), XB 2f n (/?-12?),

q: X c Rn x Rm -» Rn is the projection, d(u, b) u — b. The dotted

arrows stand for sequences of inclusion maps (as in [2], 3.3); some of these

go the wrong way but then they are homotopy equivalences or excisions,

inducing isomorphisms in cohomology. For instance, oc stands for

R" x K R"+m ~ (R"+m, R"+m - C) Rn+m _ K)

where C is a ball around 0, containing K. Similarly for j on the left, ß is a
relative version (compare [2], 3.7), namely

R" x (U, U-B) ~ (Rn, R" — C') x (17, U-B) c
(R" x U, (R"x U-Fix(<?))u(Rnx
(X,(X-Fix(g))v(X-XJ),

where C'isa ball around 0 e R" such that (C' x B). The lower tg will
be explained later.

The reader might want to follow the track of an element across the
diagram 2.3; it looks as follows

(y,b)\ (}•, b)I (y-y(y,b), b—<p(y,b))
T tI ,f

1 II

4-

(y,b)I > (y, b) | > (y-y(y,b)y, b) | (y, b), b, cp (y, b))

We now apply cohomology h HQ) to the diagram 2.3. Let
s" e /i"R" the canonical generator. Then s" x s'" generates hn+m (R'xR),
and its image along the top row of 2.3 is y) s" x sm J(g, cp) s" x ,s-m;

by definitions [1], VII, 5.2, and 1.9 above.
The left part of the lower row (which is marked induces the relative

transfer (or trace) homomorphism as
defined in [2], 3.6-8. In formulas,

(2-4) s"x(s"^x!JI'Z((),Z=I-Is.
Actually, [2], 3.8 is a little more general: it maps h X- XB) into h (U, U),
where U id U~B);we'vecomposed [2], 3.8 with h U) -> h U~B).
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Using the Künneth-formula we can write

(2.5) d*sm Y, av x ßv, with aveh(U, U —B), ßvehB
V

Following av x ßy along the lower row of (2.3) gives

(2.6) av x ßv tg (p*av o (p*ßv) av ^ (tgcp*ßv),

the latter because tg is a homomorphism of modules over h (U, U~B),
by the relative version of [2], 3.20.

If we define k: h (U, U— B) - Q by j* (u) k (u) sm (this corresponds
to y on p. 233, line 3~ of [2]), then sn* ocvx ßv has image k (otv^ tg(p*ßv) sn x sm

in the upper left corner of 2.3. On the other hand k (av ^ tgcp*ßv) is the
trace of the endomorphism

£ 1-^ - 1)1/îvi ßv K <xv^tg(p*Ç),ÇehB,

by [2], 6.7. It follows, that the image of d*sm ~ £ sn x av x ßy in the
V

upper left corner is sn x ^-times the trace of

(2.7) £i->y(-l)IHßvK(av^<p*<i;), ÇehB,
V

and so J (g, cp) trace of 2.7.

It remains to show that 2.7 agrees with tg(p*B, where we now add indices

(Ü, or £/) to indicate the range of tg resp. the domaine of <p*. This will follow

from [2], 6.16 which asserts (in greater generality) that J] (~ 1) '^v' ßv K
V

i*rj, for 77 ehU and i*: hU -> hB. Taking 77 tvg(p*vÇ we see that 2.7

agrees with £ i*tuq>u£ tg(p*BÇ, the latter by naturality ([2], 3.12) of
tg applied to 1. q

(2.8) Remark. The assumption in 2.1 that B be compact can be weakened :

It suffices that for some compact subset R a B we have that Fix (g)R

Fix(g) n(p~~1R) is compact,

im (9) c £, Dy => Fix(öf)Ä

v J V *0 V
Then the composite hR »• A (Fix (g)R) * hR is defined, has finite
rank, has Lefschetz trace equal to J (g. cp).
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Our proof of 2.1 can be adapted to this more general situation. Or, by

arguments as in [2], 8.6, one can slightly increase R in B, and decrease D9,
such that the increased R is a compact ENR, and over (the increased) R the

assumptions of 2.1 are satisfied; then 2.1 will imply the more general result

above.

§ 3. Applications, Problems.

(3.1) Whether and how the trace formula 2.1 can be used depends mainly
on one's knowledge of the transfer tg. For instance, one knows that

(i) tgp* I(gb) multiplication with the Hopf-index of gb \ Dg n p~1b
-» p~1b (in ordinary cohomology, B connected).

(ii) tg: hDg -> hB is induced by a stable map of B+ into D+ ; in particular,
it commutes with stable cohomology operations.

(iii) tg is itself given by a trace-formula ifp : E B is a bundle with compact
fibres which are totally non-cohomologous to zero.

We shall now illustrate (cf. 3.2, 3.3, 3.5) how these properties can be used.

(3.2) Suppose cp is homotopic to ß (p \ Dcp), for some ß: B -+ B. Then
tgcp* tgp*ß* I(gb) ß*, provided B is connected (cf. [2], 4.8). Therefore

J(g,cp) tr (tgcp*) I (gb) tr (ß*) I (gb) I (ß)

Geometrically, this result is very plausible: If cp ßp then Coinc (cp,p)
consists of all fibres D^ n p~xb with b e Fix (ß). The "number" of these
fibres is / (ß), and in every fibre the "number" of fixed points of g equals
I(gb)- — As the geometry suggests, the result holds under more general
assumptions and can be proved directly from § 1 (it doesn't seriously use 2.1).

As an illustration, the reader might look at the case where p: E B
is the tangent sphere-bundle of a compact Riemannian manifold B, and
<p cpt:E-+ B, cp (x) exp(ta), for te R. Clearly q> ~ cp0 p, and
Coinc (<p, p) 0 if I 11 is small enough, t ^ 0. Hence, 0 J (g, cp)

^ J (gb) I (idß) ~ I (0b) 1 f°r all g• (For a direct proof of this result the
reader should think of Fix (g) a E as a manifold such that p \ Fix (g)
has degree I(gb)).

(3.3) The definition [2], 3.3-4 shows that tg is a composite of geometric
homomorphisms (induced by continuous maps) and suspension isomor-
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