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§ 2. THE LEFSCHETZ TRACE FORMULA FOR THE C.F.P. INDEX

This reduces to the classical Lefschetz-Hopf theorem if B = a point,
or if p: E = B. Our assumptions in 2.1 are a little more restrictive than
necessary, in order to facilitate the proof; a slight generalization is indicated
in 2.8.

(2.1) THEOREM. Let p:E — B be an ENRg, where B is a compact
ENR. Let g: D, - E, ¢: D, - B denote maps as in 1.1 such that Fix (g)
is compact, and D, o Fix (g). Then the c.f.p. index of (g, ¢) agrees with

Vv A2

the Lefschetz trace of the composite hB —2~ h Fix(g)

t

~ hB, or
. D
hB -2 hD . hB, where t = t, is the fixed-point transfer (cf. [2], § 3), D

. v v
is any neighborhood of Fix (g9) in D, h is singular and h is Cech-
cohomology with coefficients in Z or Q. In formulas,

2.2) J(g,0) = tr(t,00) = tr(2op*).

Proof. Using a vertical neighborhood retraction we can assume that
E = R" X Bj; this is, in fact, what the definition 1.6-1.9 shows (if Y=R").
Then g (y,b) = (y (», b), b), where y: D, > R", and J (g, ¢) = I(y, ¢)
as explained in 1.12. Furthermore, since B is ENR, we have1: B « U < R™
and a retraction p: U — B, where U is open in R™. We can then extend

~ A~ o~

®, 7, g to maps ¢, y, g of open subsets of R” X U < R” x R™ by composing
with id X p:R" X U — R" x B. The fixed points of (p, ¢), (;, (Z) (and

their index) are the same, by commutativity [1], VIII, 5.16 — since (y, @)
= (id*1) (y, @) (id X p). Altogether (omitting the ~), we can assume that
@, 7,9 are defined in open subsets D,, D, = D, of R* X U, ¢: D,— B
U y: D, - R" D, o Fix(g), Fix (g) is (no longer compact but) proper
over U; in particular, K = Fix (g) n (p~'B) is compact.

We now argue in a similar (although simpler) fashion as on p. 241 of
[2]. We consider the following diagram (explanations below).
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Here, R, = (R",R"—0), X is an open neighborhood of Fix(g) in
which y and ¢ are defined, K = Fix(9) n(p~!B), Xz = X n(p™'B),
g: X <« R* X R" - R” is the projection, d(u, b)) = u — b. The dotted
arrows stand for sequences of inclusion maps (as in [2], 3.3); some of these
go the wrong way but then they are homotopy equivalences or excisions,

inducing isomorphisms in cohomology. For instance, o stands for
EXC

R" x R"=R!*" ~ (R"*™ R"*"™ _(C) = (R"*™ R"*" — K) <—> (X, X-K)
where C is a ball around 0, containing K. Similarly for j on the left. §is a
relative version (compare [2], 3.7), namely '

R" x (U,U—B) ~(R",R"—C") x (U, U—B) =,
EXC

(R x U, (R"x U—Fix(g9)) v (R" x (U —B)) «—=>
(X, (X —Fix(9)) v (X —Xp)),

where C’ is a ball around 0 € R”" such that K = (C’ x B). The lower 7, will
be explained later.

The reader might want to follow the track of an element across the
diagram 2.3; it looks as follows

(v,b) F—(y,b) | —~(y=y(,b), b—o(y, b))
T | A

| H J
\
s B) |~ b) ==y, b), y,b) = (y—7 (3, b), b, @ (y, b))

We now apply cohomology # = H* (—; Q) to the diagram 2.3. Let
s" € h"R;, the canonical generator. Then s" x s™ generates A"*™ (R, xR,
and its image along the top row of 2.3 is I (g, y) s" X s™ = J (g, Q) s” X s™
by definitions [1], VII, 5.2, and 1.9 above. |

The left part of the lower row (which is marked t,) induces the relative
transfer (or trace) homomorphism tgh (X, X—Xp) > h(U, U-B), as
defined in [2], 3.6-8. In formulas,

(2.4) X ESE X, Z =X —X,.

Actually, [2], 3.8 is a little more general : it maps A (X, X— Xp)into & (U, (NI ),
where U > (U—B); we’ve composed [2], 3.8 with 4 (U, ~U) — h (U, U—B).
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Using the Kiinneth-formula we can write
(2.5) d*s™ =Y a, x B,, with «,eh(U, U~B), B,€hB.
Following «, X B, along the lower row of (2.3) gives

(2.6) %, X fyi=>ty (p*a, o @*B,) = a, o (4,0*B,),

the latter because #, is a homomorphism of modules over 4 (U, U— B),
by the relative version of [2], 3.20.

If we define x: A (U, U—B) — Q by j* (1) = k (1) s™ (this corresponds
toy on p. 233, line 37 of [2]), then s" X «, X B, has image x («, t,0*p,) s" X s™
in the upper left corner of 2.3. On the other hand « (x, w #7,0*f,) is the
trace of the endomorphism

Er (= 1) "B, e (ayoty0*8), EehB,

by [2], 6.7. 1t follows, that the image of d*s™ = ) s" X a, X B, in the

v

upper left corner is s x s™-times the trace of

(2.7) £ Y (=1 Kk (a,ot,0%8), E€hB,

and so J (g, ¢) = trace of 2.7.

It remains to show that 2.7 agrees with th ®p, where we now add indices
(B, or U) to indicate the range of 7, resp. the domaine of ¢*. This will follow

from [2], 6.16 which asserts (in greater generality) that > (—1) [ B,k (o, on)

= 1*y, for e hU and 1*: hU — hB. Taking n = trgjqof,é we see that 2.7
agrees with &> 1*t{ppé = tfq);é, the latter by naturality ([2], 3.12) of
t, applied to 1. ‘

(2.8) Remark. The assumption in 2.1 that B be compact can be weakened:
It suffices that for some compact subset R < B we have that Fix (g)g
= Fix (9) n (p~ ' R) is compact, and

im(¢) = R, D, = Fix (g)x -

Y Y v t v
Then the composite hR s h (Fix (9)r) —2 hR is defined, has finite
rank, and has Lefschetz trace equal to J (g, @).
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- Our proof of 2.1 can be adapted to this more general situation. Or, by
arguments as in [2], 8.6, one can slightly increase R in B, and decrease D,
such that the increased R is a compact ENR, and over (the increased) R the
assumptions of 2.1 are satisfied; then 2.1 will imply the more general result
above.

§ 3. APPLICATIONS, PROBLEMS.

(3.1) Whether and how the trace formula 2.1 can be used depends mainly
on one’s knowledge of the transfer 7,. For instance, one knows that

(i) t,p* = I(g,) = multiplication with the Hopf-index of g,: D, N p~1b
— p~ b (in ordinary cohomology, B connected).
(i) t,: hD, — hB is induced by a stable map of B™ into D ; in particular,
it commutes with stable cohomology operations.
(ii1) ¢, 1s itself given by a trace-formula if p: £ — B is a bundle with compact
fibres which are totally non-cohomologous to zero.

We shall now illustrate (cf. 3.2, 3.3, 3.5) how these properties can be used.

(3.2) Suppose ¢ is homotopic to B (p|D,), for some B:B - B. Then
1,0% = t,p*p* = I(g,) p*, provided B is connected (cf. [2], 4.8). Therefore

J(g,0) = tr(t,0*) = I(gy) tr(B*) = I(gy) I (B).

Geometrically, this result is very plausible: If ¢ = f, then Coinc (¢, p)
consists of all fibres D, n p~'bh with b € Fix (B). The “number” of these
fibres is I (f), and in every fibre the “number” of fixed points of g equals
I(gy,). — As the geometry suggests, the result holds under more general
assumptions and can be proved directly from § 1 (it doesn’t seriously use 2.1).

As an illustration, the reader might look at the case where p: E — B
is the tangent sphere-bundle of a compact Riemannian manifold B, and
¢ = @, E— B, ¢(x) = exp(tx), for teR. Clearly ¢ ~ ¢, = p, and
Coinc (¢, p) = @ if | ¢| is small enough, ¢ # 0. Hence, 0 = J (g, @)
= 1(gy) I (idg) = 1(g,) x (B), for all g. (For a direct proof of this result the
reader should think of Fix(g) « E as a manifold such that p | Fix (g)
has degree 1 (g,)).

(3.3) The definition [2], 3.3-4 shows that 7, is a composite of geometric
homomorphisms (induced by continuous maps) and suspension isomor-
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