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Similarly, one can prove that S (A®V, B) is effectively a model for
the space of sections I'; (cf. [14]).

Eventually for computations, one proves that one gets also a model
for I'; by using instead of Q) . a DG-algebra 4 as in § 5 which is a finite

dimensional free B-module.

7. EXAMPLE OF A COMPUTATION

Let us consider the case where M is the n-sphere S”, G the rotation
group SO, ; and E the bundle described in § 3. A model for Mg is the
DG-algebra A defined by

A =R[pi,. i8]/ (s*=p) d=0 for n =2k
or A =R[py,.,Ph-1,x] ®E(s) ds =y for n = 2k-1

where deg p; = 4/ and deg s = n.

A model for E;; is obtained by taking the tensor product of 4 with WU,
the differential being defined by

dhi = Cl- - pi/Z and dCi = 0 .

By the way, WSO, is also a model for E;.

We now consider the case n = 2. The minimal model of E; is the DG-
algebra which begins as

A A(xy, x5, X3,X4, X5, X125,X13, X33, «..)
where

degx; = degx, = 5,degx; = 7,degx, = degxs = 8,
degxy, = 9,degx;; = degx,; = 11,
etc.

(there is an infinite number of generators).
The differential is defined by

dx,, = XXy, dXy3 = X1X3 — P1X4,dXy3 = X2X3 — P1Xs5,
etc.

According to the construction of § 5, a minimal model for the bundle
I'c = Bg; begins as |

R [p1] ® A(J—Cp X2y X1, X9, X3, Xy, Xs, X3,X19, X4, X5, ...)
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where
degx; = degx; —2,6(x) =1 ®x; +s X,

dx; is as above and dx,, = x;x, + p,;X;X,

d)?l = d.)zz — djés = O, d.f4 = plfl,dfs - pl.)_c-z,
dXi, = X1Xy + X1X,,
etc.

A basis for H* (I'g) = H* (Lgs, SO5) is given by the classes of the
cocycles |

X1, X2, P1s> X1, X, X3, X1 X5, X1X1, X1 X5, X5X5, X1 X3,
X3X3, X1X4, X5X5, X1 X5 + XpX4, P1X3 5
etc.
The first multiplicative relations are

— — - - 2
piXy ~0,px, ~0,X;x, ~ X,x4, p7 ~ 0, etc.

The first “exotic” class is given by the cocycle X,X,X,, of degree 13.
The classes x; and X, correspond to the classes described by Raoul in
his lecture [4], for n = 2.

We now give an example of a general statement

THEOREM. The kernel of the map
H* (BSOn+1) - H* (LSna SOn+1)

is the ideal generated by the elements which are polynomials of degree > 2n
in the Pontrjagin classes pq, ..., Ppyoy-

As a consequence, we get exactly what is implied by the vanishing theo-
rem of Bott [1]. For instance, for n odd, the image of the powers of the Euler
class is non zero. So one can ask for examples of flat (2k + 1)-sphere bundles
with a non zero power of the Euler class.

One can also check that the homomorphism (see end of § 3)

WSO, — C*(Lgn, SO, 41, Qsn)

induces an injection in cohomology.
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