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Similarly, one can prove that (A 0 V, B) is effectively a model for
the space of sections rG (cf. [14]).

Eventually for computations, one proves that one gets also a model

for rG by using instead of QMq a DG-algebra A as in § 5 which is a finite

dimensional free ^-module.

7. Example of a computation

Let us consider the case where M is the ^-sphere Sn, G the rotation
group SOn+1 and E the bundle described in § 3. A model for MG is the

.DG-algebra A defined by

A R [p1? pk, s] / (s2 —Pk) d 0 for n 2k

or A R [pl5 x] ® E (s) ds x f°r n 2/c — 1

where deg pt Ai and deg s n.

A model for EG is obtained by taking the tensor product of A with WUn,
the differential being defined by

dht ct — Pi/2 and dct 0

By the way, WSOn is also a model for EG.

We now consider the case n 2. The minimal model of EG is the .DG-

algebra which begins as

A 0 A(x1,X2,x3,X4,x5,X12,X13,x23,...)
where

degxt degx2 5,degx3 7, degx4 degx5 8,
degx12 9, degx13 degx23 11,

etc.

(there is an infinite number of generators).
The differential is defined by

dxi dx2 0, dx$ Pi, dx4 — Pi%i> dx$ p^x2
dx±2 x^x2, dx±3 a^x2 P1A4, dx23 — x2x3 — P1X5

etc.

According to the construction of § 5, a minimal model for the bundle
Fg Bg begins as

RlPl] ® A(XU X2, X1? X2, X3, X4, X5, X3, X^2, X4, x5,
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where

deg x1 deg xt - 2, s (xt) 1 <g) xt + 5 0 xi9

dxt is as above and dx12 x1x2 + PiX1x2

dx1 dx2 dx3 0, dx4 p1x1,dx5 p1x2,

dx12 x±x2 + x1x2,
etc.

A basis for H* ÇTG) H* (Ls2, SOd) is given by the classes of the

cocycles

^2? Pl> ^1? ^2? ^3? ^1^2? ^I^Ij ^1^2? X2X2m ^1^3?

x2x3, x1x4, x2x5, x1x5 + x2x4, p1x3
etc.

The first multiplicative relations are

p1x1 ~ 0, p1x2 ~ 0, X-]LX2 ~ x2x1,p\ ~ 0, etc.

The first "exotic" class is given by the cocycle x1x2x12 of degree 13.

The classes x1 and x2 correspond to the classes described by Raoul in
his lecture [4], for n 2.

We now give an example of a general statement

Theorem. The kernel of the map

H*(BSOn+1)^H*(LSn,SOn+1)

is the ideal generated by the elements which are polynomials of degree > In
in the Pontrjagin classes pu p[nj2y

As a consequence, we get exactly what is implied by the vanishing theorem

of Bott [1]. For instance, for n odd, the image of the powers of the Euler
class is non zero. So one can ask for examples of flat (2k + l)-sphere bundles

with a non zero power of the Euler class.

One can also check that the homomorphism (see end of § 3)

WSOH-+C*(LSn,SOn+l9QSn)

induces an injection in cohomology.
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