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(1.10) and Lemma 1.2 yield
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Multiply both sides of (1.11) by #™ and sum over m from 0 to oo. We get
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CHAPTER 1I

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. CHEVALLEY’S THEOREM

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where » = dim V. We show that

this lower bound is attained only for the finite reflection groups. We first
define these groups.

DerINITION 2.1. Let ¢ be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <> ¢ fixes an n — 1 dimensional

hyperplane n and o 1s of finite order > 1. = is called the reflecting hyper-
plane (r.h.) of 0.

REMARK. Choose v ¢ 7. and let ov = (v + p, pen. If { = 1, then
o™y = v + mp, contradicting that ¢ is of finite order. Hence { # 1.
Let o' = v + (Zj—l)‘lp and choose py, ..., p,—, as a basis for n. Then
op;=p, 1 <i<<m—1,0v" = {v'.{isaroot of 1 in k which is distinct
from 1, as o i1s of ﬁmte order > 1. Thus o is a reflection iff relative to some
basis, the matrix for ¢ is diagonal, n — 1 of the diagonal entries equalling 1
and the remaining one equalling a root of 1 in k distinct from 1.




1 X, X; (i#)) fixes the hyperplane x; — x; = 0, so that it is a reflection.
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DEFINITION 2.2. G is a finite reflection group acting on V < G is a
finite group generated by reflections on V.

As an example of a finite reflection group, let G = §,. It is well known
that S, is generated by transpositions. The transposition of the variables

We have the following result

THEOREM 2.1 (Chevalley [4]). Let G be a finite reflection group acting
on the n-dimensional vector space V. The invariants of G have a basis
consisting of n homogeneous elements which are algebraically independent
over k.

Let k [x] denote the ring of polynomials in X, ..., x, with coefficients
in k. We prove the following. |

LemmA 2.1. Let I, ..., I,, be invariant polynomials of G, fl ¢, ..., 1,)
= the ideal in k [x] generated by I,, ..., I,. Suppose that P, I, +
+ P, 1, = 0, the P’s being polynomials with P; homogeneous. Then
P, e #, where £ is the ideal in k [x] generated by the homogeneous in-
variants of positive degree.

Proof of Lemma 2.1. The proof proceeds by induction on deg P;.
Suppose deg P, = 0, so that P, = cek. If ¢ # 0, then I, € (I, ..., 1),
contrary to assumption. Hence ¢ = 0 = P, e #. Let degP, = n > 0.
Let o be a reflection in G and L = 0 the equation of its r.h. (L is a linear
homogeneous polynomial). We have P, (x) I, (x) + ... + P, (x) [, (x) =
P, (ox)I{ (x) + ... + P,(6x) I, (x) = 0. Hence [P;(ox)—P;(x)]I; (x)
+ ... + [P, (6x)—P, (x)] 1, (x). For L(x) =0, a(x) = x, so that
P,(ox) — P;(x) = 0 whenever L(x) =0,1 <i<<m. Smce L(x) is
irreducible it follows that

P; (ox) — P; (x)
L(x)

is a polynomial, 1 < i < m. We have

[pl (ox) — Pl(x)] L) 4 o+ I:Pm (ox) — P, (x)] I () = 0.

L(x) L (x)

e

d Py (ox) — Py (x)
* [ L)

] < deg‘Pl(fx)"

so that by the induction hypothesis
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Py (ox) — Py (x)
L(x)
Hence P, (ox) = P, (x) (mod #). Since the ¢’s generate G, this con-
gruence holds for o € G. We conclude that

= 0 (mod J).

P, (x) = —é—— Y P, (ox) (mod .#).

I ceG

The polynomial — Y P, (ox) is invariant and homogeneous of
oeG
degree n > 1. Hence it € 4, so that P, € £.

Proof of Theorem 2.1. We choose I, ..., I, to be homogeneous in-
variants of positive degree forming a minimal basis for #. Hilbert’s proof
of Theorem 1.1 shows that 7., ..., I, form a basis for the invariants of G.
We show that 7, ..., I, are algebraically independent, so that r = .

Suppose, to the contrary, that 7,, ..., I, are algebraically dependent.
Choose H (y4, ..., y,) to be a polynomial of minimal positive degree so
that H (I (x), ..., I, (x)) = 0. Let x-degree of any monomial y{' ... y*" be
dya, + .. +d a, where d, = deg I,, We may assume that all x-degrees
of the monomials appearing in H are the same. Let

0 H
H;(x) = a—y(ll(x),...,lr(x)), 1 <i <r.

The H;s are invariant homogeneous polynomials, as all monomials in H
have equal x-degree. Since H (y,,...,»y,) is of positive degree, some

0 H .
7 # 0, It follows that the corresponding H; (x) # 0, as H was chosen
Vi

to be of minimal degree; i.e. not all H,'s = 0. We relabel indices so that
Hy, .., H,1 <s <r, are ideally independent (i.e. none of the H,'s is in

the ideal generated by the others) and H, ;e (Hy, ..., H). 1 <j <r — s.
Thus Hyy; = ) V;H,1<j<r—s where each V,;is a homo-
i=1

geneous polynomial of degree d; — d,; (V}; is interpreted to be 0 if this
degree is negative). Differentiating the relation H (I (x), ..., 1, (x) =
with respect to x,, we obtain

’ oI, o 0 * o0l

(2.1) >, H =) H i +ri Hg,

i=1 a i=1 a axk—_

Z 165 rZS “S”] =0

Xk
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Since

" als-i-l

LI

is homogeneous of degree d;, — 1, we conclude from Lemma 2.1 that

r—s ] a]s r
Vi = Y BT, 1<i<s,

J g2

0 X, 0 Xy

(2.2)

5xk F=3

where the B;’s are homogeneous and each term in (2.2) is homogeneous of
degree d; — 1. This forces B, = 0. Multiply both sides of (2.2) by x, and
sum over k. We conclude, by Euler’s identity for homogeneous polynomials,

¥—s

(2.3) dil; + ), ViderIoo = Z A;l;

=1 J=1

the 4,’s being homogeneous with 4; = 0.

(2.3) shows that I,e({,....,1;,_{, 1,44, ..., 1), contradicting the mini-
mality of the basis /4, ..., I,. Hence 74, ..., I, are algebraically independent
and r = n.

2. THE THEOREM OF SHEPHARD AND ToDD

We obtain in this section a converse to Chevalley’s Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection
groups. We first prove several preliminary results.

LemMA 2.2. Let H be a finite group of linear transformations acting on
the n-dimensional space V' and fixing the » — 1 dimensional hyperplane 7.
The elements of H have a common eigenvector veV — . Let g (v) =
{(6)v, o0 € H. { (o) is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that H is a cyclic group.

ReMARK. The above lemma is a consequence of Maschke’s Theorem
proven in section 2.3. We provide another proof below.

Proof. Let o, € H, 6, # e (the identity of H). By the remark following
Definition 2.1, there exists v € ¥ — & such that o, (v) = {; v, {; being a
root of unity # 1. For ce H, let 0 (v) = {(6)v + p(0), {(6) ek and
p(@)en. Leto* =0,7 06" o, 0. Then o* (v) = v + (1—{,) p (0). Since
a* is of finite order, (1—{,)p (¢) = 0 = p (o) = 0. Hence o (v) = { (o) v.

{ (o) is clearly an isomorphism from H into U, the multiplicative group of
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