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(1.10) and Lemma 1.2 yield
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Multiply both sides of (1.11) by tm and sum over m from 0 to oo. We get
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CHAPTER II

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. Chevalley's Theorem

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where n dim V. We show that
this lower bound is attained only for the finite reflection groups. We first
define these groups.

Definition 2.1. Let a be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <=> a fixes an n — 1 dimensional
hyperplane n and a is of finite order > 1. % is called the reflecting hyper-
plane (r.h.) of a.

Remark. Choose v$n. and let a v £ v + /?, p e n. If £ 1, then
amv v + mp, contradicting that a is of finite order. Hence £ # 1.

Let v' v + (£-l)_1/> and choose ...,pn_1 as a basis for 7c. Then
& Pi Pb 1 < *< w ~~ 1, g f'. £ is a root of 1 in & which is distinct
from 1, as a is of finite order > 1. Thus a is a reflection iff relative to some
basis, the matrix for a is diagonal, n — 1 of the diagonal entries equalling 1

and the remaining one equalling a root of 1 in k distinct from 1.
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Definition 2.2. G is a finite reflection group acting on V o G is a

finite group generated by reflections on V.

As an example of a finite reflection group, let G Sn. It is well known
that Sn is generated by transpositions. The transposition of the variables

xh Xj (i^j) fixes the hyperplane xt — Xj 0, so that it is a reflection.
We have the following result

Theorem 2.1 (Chevalley [4]). Let G be a finite reflection group acting
on the n-dimensional vector space V. The invariants of G have a basis

consisting of n homogeneous elements which are algebraically independent

over k.

Let k [x] denote the ring of polynomials in xu
in k. We prove the following.

x„ with coefficients

Lemma 2.1. Let Iu Im be invariant polynomials of G, f $ (/2, Im)

the ideal in k [x] generated by /2, Im. Suppose that Px J\ +
+ Pm Im 0, the P^s being polynomials with P1 homogeneous. Then

Px e J, where «/ is the ideal in k [x] generated by the homogeneous
invariants of positive degree.

Proof of Lemma 2.1. The proof proceeds by induction on degiV
Suppose deg/^ 0, so that Pt c e k. If c A 0, then f e (/2, Im),

contrary to assumption. Hence c 0 =^> P1 e J. Let deg P1 n > 0.

Let a be a reflection in G and L 0 the equation of its r.h. (L is a linear

homogeneous polynomial). We have P± (x) II (x) + + Pm (x) Im (x) 0,

Pi {ox) /, (x) + + Pm {ax)4(x) 0. Hence [P, {ox)-Pl (ar)] h (x)
+... + \Pm{ax)-Pm{x)~\Im{x).ForL (x) 0, a (x) x, so that

Pi (ox) — Pt (x) 0 whenever L (x) 0, I < / < m. Since L {x) is

irreducible it follows that
Pj (ox) - P, (x)

L{x

is a polynomial, 1 < < We have

'Pi {ox) - Pi (x)

L{x)

deg

W + • • • +

Pi {ox) - P

so that by the induction hypothesis

iO)~j

Pm (ox) ~ Pm

L (x)

< deg Pi (x)

4 (X) 0
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Pi (ax)— Pi (x)
— s 0 (mod J).

L(x)
Hence P1 (ax) P1(x) (modSince the a's generate G, this con-

gruence holds for a eG. We conclude that

pi (*) ~fr,Z pi O7*) (mod
I G I geG

The polynomial £ Px (ax) is invariant and homogeneous of
\G\ tr zG

~ '

degree n > 1. Hence it e «/, so that Pxe J.
Proof of Theorem 2.1. We choose 7l5 Ir to be homogeneous

invariants of positive degree forming a minimal basis for J>. Hilbert's proof
of Theorem 1.1 shows that 71? Ir form a basis for the invariants of G.

We show that 7ls Ir are algebraically independent, so that r n.

Suppose, to the contrary, that 7l5 7r are algebraically dependent.
Choose 77 (yl9 yr) to be a polynomial of minimal positive degree so

that 77(7X (x), Ir (x)) 0. Let x-degree of any monomial yl1 yarr be

d1 a 1 + + dran where dt deg It. We may assume that all x-degrees
of the monomials appearing in 77 are the same. Let

Hi(x) ^—(1tW ^W)' 1 <r-5 yt

The 77/s are invariant homogeneous polynomials, as all monomials in 77

have equal x-degree. Since H(y1,...,yn) is of positive degree, some
ô H
-— # 0, It follows that the corresponding Ht (x) # 0, as 77 was chosen
a J;
to be of minimal degree; i.e. not all 77/s 0. We relabel indices so that
771} 77s, 1 < s < r, are ideally independent (i.e. none of the 77/s is in
the ideal generated by the others) and Hs+je (771?..., Hs). 1 <j<r-s.

S

Thus Hs+j £ Vjt Hh 1 < j < r - s, where each Vn is a homo-
/= l

geneous polynomial of degree dt ~ ds+j (VJt is interpreted to be 0 if this
degree is negative). Differentiating the relation 77(7t (x), 7r (x)) 0
with respect to xk, we obtain

(2.1) £ H, 8f£ Ht + if Hs+;^i=l V xk i= 1 dxfc i 1
<3 Xfc

i-1 1=1 ^Xfc
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Since

di, dis+l- + I vir
Sxk l=1 ôxk

is homogeneous of degree dL — 1, we conclude from Lemma 2.1 that

r) T r~s r

(2.2) V,. 1 <i < s
d xk i i d xk j i

where the i?/s are homogeneous and each term in (2.2) is homogeneous of
degree dt — 1. This forces i?; 0. Multiply both sides of (2.2) by xk and

sum over k. We conclude, by Euler's identity for homogeneous polynomials,
y — s r

(2.3) diIi+ £ Vnda+lIs+l £ Ajlj
y=i

the >4/s being homogeneous with At 0.

(2.3) shows that 7f e (/l5 /£_ l5 /i+15 7r), contradicting the
minimality of the basis 7l5 7r. Hence 7l5 7r are algebraically independent
and r n.

2. The Theorem of Shephard and Todd

We obtain in this section a converse to Chevalley's Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection

groups. We first prove several preliminary results.

Lemma 2.2. Let H be a finite group of linear transformations acting on
the ^-dimensional space V and fixing the n — 1 dimensional hyperplane n.
The elements of 77 have a common eigenvector v e V — n. Let o (v)
£ (er) f, cr e 77 £ is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that 77 is a cyclic group.

Remark. The above lemma is a consequence of Maschke's Theorem

proven in section 2.3. We provide another proof below.

Proof. Let er x e 77, er x ^ e (the identity of 77). By the remark following
Definition 2.1, there exists v e V ~ n such that g]t (v) (1 v, £x being a

root of unity # 1. For ere 77, let cr (v) £ (cr) v + p (cr), £ (<r) g k and

p (cr) e 7t. Let <7* cr1
~1 n"1 cr. Then <7* (v) v + (1 ~Ci)p (o)- Since

(7* is of finite order, (1 ~Ci)P (o) 0 => p (a) 0. Hence <7 (v) £ (n) v.

£ (a) is clearly an isomorphism from 77 into £7, the multiplicative group of
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