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ÜBERLAGERUNGEN DER PROJEKTIVEN EBENE

UND HILBERTSCHE MODULFLÄCHEN 1

by F. Hirzebruch

Wir werden in diesem Vortrag einige verzweigte Überlagerungen der

projektiven Ebene als Beispiele von regulären algebraischen Flächen

angeben, sie in die Enriques-Kodaira Klassifikation (gemäß der Kodaira-

Dimension) einordnen und diese Beispiele, wenn möglich, mit Hilbertschen

Modulflächen identifizieren. Beweise werden fortgelassen oder nur skizziert.

Für algebraische Flächen allgemein siehe [8], [10]. Zur Klassifikation
Hilbertscher Modulflächen vergleiche [3], [4], [5], [1], [6].

§ 1. Eine grobe Klassifikation der kompakten komplexen
Mannigfaltigkeiten geschieht mit Hilfe der Kodaira-Dimension. Es sei X eine

kompakte komplexe Mannigfaltigkeit der Dimension n und K das

kanonische Bündel von X. Die Dimension des C-Vektorraumes H° (X, Q (Kr))
der holomorphen Schnitte von Kr (r ^ 1) wird mit Pr bezeichnet (r-tes

Plurigeschlecht, P1 pg ist das geometrische Geschlecht). Man hat eine

„meromorphe Abbildung" von X in den komplexen projektiven Raum der

Dimension Pr - 1 definiert mit Hilfe einer Basis von H° (X, Q (Kr)).
Die Kodaira-Dimension k (.X) ist das Maximum der Dimensionen der

Bilder aller dieser r-fach kanonischen Abbildungen. Sie kann die Werte
— 1,0, ...,n annehmen, wobei k (X) — 1 genau dann, wenn alle Pr 0.

Die Kodaira-Dimension ist eine bimeromorphe Invariante.
Wir betrachten reguläre algebraische Flächen X, wobei regulär bedeutet,

daß die erste Bettische Zahl von X verschwindet. Eine solche Fläche X
ist rational genau dann, wenn k (X) -1. In den Fällen k (X) ^ 0

gibt es in der birationalen Äquivalenzklasse von X ein bis auf biholomorphe
Äquivalenz eindeutig bestimmtes minimales Modell X0% das heißt eine

algebraische Fläche, die keine exzeptionellen Kurven (singularitätenfreie
rationale Kurven der Selbstschnittzahl - 1) enthält. Von X ausgehend kann
man X0 erreichen, indem man in X alle exzeptionellen Kurven niederbläst
(sie sind automatisch disjunkt), in der dann erhaltenen Fläche alle exzep-

0 Vorgetragen im Kolloquium für Topologie und Algebra, Zürich, April 1977.
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tionellen Kurven niederbläst usw. bis man nach endlich vielen Schritten
zu X0 kommt.

Die erste Chernsche Klasse e H2 (X, Z) ist bis auf das Vorzeichen

gleich der charakteristischen Klasse von K. Die Zahl c\ [X], auch kurz
mit c\ bezeichnet, ist eine wichtige Invariante. Die Klassifikation von
Enriques-Kodaira (für minimale reguläre Flächen X mit k (X) ^ 0) besagt:

k 0 <=> X ist eine K3-Fläche (c1 0) oder eine Enriques-Fläche
(cx # 0, 2ci 0)

k l o X läßt eine eindeutig bestimmte elliptische Faserung über der

projektiven Geraden (C) zu. Die Chernsche Klasse c1

ist als rationale Kohomologieklasse ^ 0 und wird bis auf
einen Faktor durch eine Faser repräsentiert. Es ist c\ 0

k «= 2 <=> c\ > 0

(Flächen mit k 2 nennt man vom allgemeinen Typ).

Alle K3-Flächen sind zueinander diffeomorph. Ein Standardbeispiel ist
die Fläche Xq + x\ + x\ + x* 0 in P3 (C). Die Fundamentalgruppe
einer Enriques-Fläche hat die Ordnung 2. Die universelle Überlagerung
ist eine K3-Fläche.

§ 2. Wir betrachten die folgende Konfiguration in der reellen projektiven

Ebene, bei deren Deutung mir I. Naruki geholfen hat.

Man wähle 4 Geraden in allgemeiner Lage und bezeichne die 6 Schnittpunkte

mit pu ...,p6. Verbindet man jeden Punkt pt mit demjenigen Punkt

Pj, mit dem pt noch nicht verbunden ist, dann erhält man drei Geraden

(die Diagonalen des vollständigen Vierseits) mit drei Schnittpunkten

Qu #2* #3- Danach verbindet man jeden Punkt pt mit demjenigen mit
dem Pi noch nicht verbunden ist. Man erhält sechs Geraden, von denen sich

zwei in jedem qt und drei in jeweils 4 weiteren Punkten ru r2, r3, r4 schneiden.

Es gibt genau eine projektive Transformation der projektiven Ebene,

welche eine vorgegebene Vertauschung der 4 Geraden bewirkt. Deshalb

ist die Gruppe der projektiven Automorphismen unserer Konfiguration
isomorph zur symmetrischen Gruppe S4. Die ph die qh die rt bilden jeweils
einen Orbit.

Man kann die Konfiguration auch so erhalten. Es sei W ein Würfel
im R3 mit dem Ursprung 0 als Mittelpunkt. Die Eckpunkte des Würfels,
die Mittelpunkte der Kanten, die Mittelpunkte der Seiten verbunden mit
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0 definieren 4 bzw. 6 bzw. 3 eindimensionale Teilräume des R3 und damit
Punkte von P2(R). Dies sind die Punkte ri9pu qt; die Gruppe S4 wird als

Automorphismengruppe von W in SO (3) eingebettet. Es seien <Ül> É2, ^3

die Standardkoordinaten des R3. Die quadratische Form ç3 + Çj + ç3

L'Enseignement mathém., t. XXIV, fasc. 1-2.
ï

5
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bleibt also bei den Operationen von £4 invariant. Wir erweitern die relie

projektive Ebene zur komplexen projektiven Ebene P2 (C), homogene
Koordinaten Çl9 £2, £3. Der Kegelschnitt + £2 + £3 0 bleibt unter
S4 invariant. Er heißt Fundamentalkegelschnitt. Zu jedem Element A
A e SO (3) kann man den Kegelschnitt

< + > 0

einführen. Von besonderem Interesse sind die Kegelschnitte, die zu den
Elementen von S4 c= SO (3) gehören. Wir betrachten die drei Kegelschnitte
EUE2,E3, die zu den drei Involutionen der alternierenden Gruppe A4
und die vier Kegelschnitte Fl9 F2, F3, F4 die zu den 4 Zyklen der Länge 3

von A4. gehören. (Zu jedem Zyklus gehören zwei nicht triviale Elemente

von A4, sie sind invers zueinander und definieren deshalb denselben
Kegelschnitt). Die Kegelschnitte Eh Fj sind nicht ausgeartet. Rechnerisch läßt
sich die Konfiguration der oben angegebenen Geraden zusammen mit den

Kegelschnitten besser behandeln, wenn man im C4 (Koordinaten xl9 x2, x39

x4) den Unterraum x1 + x2 + x3 + x4 0 einführt und dafür die

projektive Ebene betrachtet. Die Gruppe S4 operiert auf

P2 (Q { * G P3 (Q I x1 + x2 + x3 + x4 0 }

durch Permutation der homogenen Koordinaten. Es sei die z-te

elementarsymmetrische Funktion der Xj.

Dann gilt

a1 0

<r2 0 ist der Fundamentalkegelschnitt.

03 0 ist die Vereinigung der 3 Diagonalen.

04 — 0 ist die Vereinigung der 4 ursprünglich gegebenen
Geraden unserer Konfiguration (vollständiges
Vierseit).

A fi (xi~xj) 0 ist die Vereinigung der im letzten Schritt durch
i<j Verbindung von pt mit qj konstruierten sechs

Geraden.

Die Kegelschnitte El9E29 E3 sind gegeben durch

(1) x1x2 + x3x4 0, xix3 + x2x4 0 x1x4 + x2x3 0



— 67 —

Der Kegelschnitt F4, der zum Zyklus (123) (4) gehören möge, hat die

entsprechend für Fl9 F2, F3.

Die Kegelschnitte Eu E2, E3 schneiden sich nur in den Punkten

Pi(i= 1, 6) gegeben durch (0,0, 1, -1) und Permutationen, und zwar

berühren sich in jedem pt genau zwei dieser Kegelschnitte.

Die Kegelschnitte Fl9 F2, F39F4 schneiden sich nur in den Punkten

qt (z 1, 2, 3) gegeben durch (1,1, -1, -1) und Permutationen, und zwar

geht jeder Kegelschnitt Fj durch jeden Punkt qi9 wobei das Schnittverhalten

(zwei einfache Berührungen, sonst transversale Schnitte).
Neben dem Fundamentalkegelschnitt gibt es noch zwei Kegelschnitte

Bu B2, die bei der Gruppe A4 in sich übergehen, während sie durch ein

Element von S4 ungeradem Signums vertauscht werden. (Es sei p

exp ('Iniß)).

(4) Bx : (x± +x2)(x3 + x4) F p(x1 +x3)(x2 +x4)

Diese quadratischen Ausdrücke kommen als Lagrangesche Resolventen
in der Theorie der Gleichung 4. Grades vor. Sie sind Semi-Invarianten
für bezüglich der beiden nicht-trivialen Charaktere von ^44, die wegen
des Isomorphismus A4/V4 Z/3Z existieren, wobei V4 die Kleinsche
Vierergruppe ist. Die Kegelschnitte Bl9 B2 gehen durch die 4 Punkte

ri,..., r4 gegeben durch (1, 1, 1, —3) und Permutationen. Sie bilden eine
Basis des Büschels der durch rl9 r2, r3, r4 gehenden Kegelschnitte. Schließ-

X]X2 X2X3 F XßXj F x4 0

in jedem qt wie folgt ist

(3)

+ p2 (x1+x4)(x2+x3) 0

B2 : (xt+x2) (x3 +x4) + p2 (x 1 +x3) (x2 +x4)

+ p(xt+x4)(x2+x3) 0
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lieh werden wir noch eine irreduzible Kurve der Ordnung 6 benutzen,
nämlich die Kurve

(5) C : %o\ + 21 o0

Diese Kurve hat in den 4 Punkten rt einen gewöhnlichen Doppelpunkt
und in den 6 Schnittpunkten von <j3 0 mit dem Fundamentalkegelschnitt
cr2 0 eine Spitze. Nach der Plückerschen Formel hat C das Geschlecht 0.

§ 3. Zu jeder Kurve L geraden Grades in P2 (C) gibt es eine
wohldefinierte doppelte Überlagerung X (L) von P2 (C) mit L als Verzweigungskurve.

Die Fläche X (L) hat singuläre Punkte über den singulären Punkten

von L. Löst man die Singularitäten von X (L) in der kanonischen
minimalen Weise auf, dann erhält man eine singularitätenfreie algebraische
Fläche Y (L), die wir in Beispielen untersuchen wollen. Es kommt vor,
daß Y (L) nicht regulär ist (vgl. [10] Chap. VIII); in allen unseren Beispielen
kann man nachweisen, daß Y (L) regulär ist.

Bsp. 1. Die Verzweigungskurve L sei A 0. Dies ist eine Kurve
6. Ordnung (zerfallend in 6 Geraden) mit q1, q2, q3 als Doppelpunkten,

rt, r4 als Tripelpunkten und keinen weiteren Singularitäten. Entsprechend

hat X (L) sieben singuläre Punkte qh Vj. Die Punkte qt werden bei der

Auflösung aufgeblasen in eine singularitätenfreie rationale Kurve der

Selbstschnittzahl —2, während rj aufgeblasen wird zu einer Konfiguration
singularitätenfreier rationaler Kurven mit folgendem Schnittverhalten

-2

(6)

-2 -2

-2

Die Fläche Y(L) ist eine /O-Fläche. Durch die Auflösung der singulären

Punkte q^rj hat man 3 + 4 • 4 19 algebraische Zyklen auf Y (L),
die als rationale Homologieklassen linear-unabhängig sind bei negativ-
definiter Schnittform. Da jede algebraische Fläche einen „Hyperebenen-
schnitt" mit positiver Selbstschnittzahl besitzt, ist die Picardsche Zahl
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(Maximalzahl algebraischer Zyklen, die als rationale Homologieklassen

linear unabhängig sind) mindestens 20 und deshalb genau gleich 20, weil

für eine K3-Fläche hut 20 ist. Für K3-Flächen mit maximaler Picardzahl

siehe [9].

Bsp. 2. Die Yerzweigungskurve L bestehe aus den 4 Geraden o4 0

und den drei Kegelschnitten E1, E2,E3. Dies ist eine Kurve L der Ordnung 10

mit genau 6 singulären Punkten, nämlich den Punkten pu p6. In jedem

Pi sieht die Yerzweigungskurve so aus

Entsprechend gibt es in X (L) sechs singuläre Punkte p1,...,p6. Die

Auflösung jedes dieser singulären Punkte wird durch ein Diagram

dargestellt (zwei singularitätenfreie rationale Kurven mit Selbstschnittzahl
— 4, —2). Solche zyklischen Konfigurationen kommen als Auflösungen
der Spitzen Hilbertscher Modulflächen vor ([3], vgl. auch [6], wo Singularitäten

der Form Z2 E (X, Y) betrachtet werden) und immer, wenn eine

zyklische Konfiguration auftritt, kann der Yerdacht entstehen, daß es

sich um eine Hilbertsche Modulfläche handelt.
Man kann beweisen, daß Y (L) vier disjunkte exzeptionelle Kurven

enthält, nämlich die Urbilder der vier Geraden cr4 0, und Y (L) nach
Niederblasen dieser 4 Kurven eine Enriques-Fläche als minimales Modell
Y0 (L) ergibt.

Bsp. 3. Hier handelt es sich um eine vierblättrige Überlagerung von
P2 (C). Wir nehmen zunächst die 2-blättrige Überlagerung entlang des
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Fundamentalkegelschnitts. Das Ergebnis ist isomorph zu Px (C) x PA (C),
wobei der Fundamentalkegelschnitt der Diagonale entspricht.

In dieser Fläche betrachten wir als Verzweigungskurve L das Urbild
der Vereinigungsmenge der 4 Kegelschnitte Fu F2, F3, F4. Da jedes Ft
den Fundamentalkegelschnitt in 2 Punkten berührt, besteht L aus 8

Komponenten (jede einzelne Komponente kann als Graph einer gebrochenen
linearen Transformation Pi (C) -> Px (C) angesehen werden). Die Kurve
L in Px (C) x px (C) hat die folgenden Singularitäten:

a) 6 singuläre Punkte vom Typ (3), die in Px (C) x p1 (C) über qu q2, #3

e P2 (C) liegen

b) 8 Doppelpunkte, die aus den Berührungspunkten der Ft mit dem

Fundamentalkegelschnitt entstehen.

Wir bezeichnen die doppelte Überlagerung von Px (C) x px (C)
entlang L mit X (.L). Sie hat 14 singuläre Punkte. Die unter b) angegebenen
acht Singularitäten von L liefern singuläre Punkte von X (.L), die alle in
eine singularitätenfreie rationale Kurve der Selbstschnittzahl —2

aufgeblasen werden, während die unter a) angegebenen sechs singulären
Punkte von L zu singulären Punkten von X (L) führen, die in eine

Konfiguration

-2

-3 -3

-2

augeblasen werden. Man erhält so eine algebraische Fläche Y (L), von der

man nachweisen kann, daß sie regulär ist und Kodaira-Dimension 2 hat

(allgemeiner Typ). Sie ist fernerhin minimal. Man kann ausrechnen, daß

Y (.L) die Eulerzahl 44 und das geometrische Geschlecht pg 3 hat. Es

folgt A1'1 36. Die Picardsche Zahl p von Y (L) ist nicht bekannt, doch
liefern die Kurven, die von der Auflösung der Singularitäten herrühren,
und ein „Hyperebenenschnitt" die Abschätzung

33 ^ p ^ 36.
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Der Vektorraum der homogenen Polynome für die Schar der

Kegelschnitte, die durch qu ql9 q3 gehen, läßt sich mit H°(Y(L), Q (.K))
identifizieren in Übereinstimmung mit pg 3. Zu diesen Polynomen gehören

Fl9 F2, F39 F4. (Beachte, daß die Summe der zugehörigen Polynome (2)

gleich 0 ist.) Die einfach-kanonische Abbildung Y -> P2 (C) ist gleich der

Überlagerungsabbildung Y -+ P2 (C) vom Grade 4 gefolgt von einer

Cremona-Transformation.

4. Wir betrachten nunmehr als Verzweigungskurve L die

Vereinigungsmenge C u B1 u B2 (siehe (4) und (5)). Dies ist wieder eine Kurve
der Ordnung 10. Man kann leicht ausrechnen, daß B1 u B2 durch die

Gleichung g2 -h 12 g4 0 gegeben wird. Also ist L die Kurve

(«rf +12 ffj (8*1+27 <4) 0.

Zunächst müssen die singulären Punkte von L bestimmt werden. Die
Kurven B1 u B2 und C schneiden sich nur in rl9 r4 und zwar stimmen die
beiden Tangenten von Bxkj B2 in rt mit den beiden Tangenten von C
in rt überein. Die Kurve L hat also in rt eine Singularität vom Typ (3).
Deshalb hat die doppelte Überlagerung X (L) über rt eine Singularität mit
der Auflösung

-2

die auch schon in Beispiel 3 vorkam. Ferner hat C und damit L jeweils eine
Spitze in den sechs Schnittpunkten von g2 0 und <t3 0. Die
entsprechenden 6 Singularitäten von X (L) werden aufgelöst durch je eine
Konfiguration
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Die so erhaltene algebraische Fläche Y (L) hat Kodaira-Dimension 1,

sie ist minimal. Sie hat Eulerzahl 36, das geometrische Geschlecht pg ist
gleich 2. Wir werden die elliptische Faserung angeben. Ein von Bu B2

verschiedener Kegelschnitt B des durch Bl9 B2 aufgespannten Büschels hat
die Schnittzahl 2 mit C in jedem Punkt r{. Die Summe der Schnittzahlen

von B mit C außerhalb der rt ist deshalb gleich 4. In Y (L) ist also die

Überlagerung eines allgemeinen Kegelschnitts des Büschels eine elliptische
Kurve. Damit ist die elliptische Faserung beschrieben. Wir werden noch
die Ausnahmefasern angeben. Für die verschiedenen Typen von
Ausnahmefasern siehe [7]. Die Kurve B1 bildet mit je einer —2)-Kurve aus

jeder der 4 Konfigurationen (7) eine Ausnahmefaser vom Typ

-2

(9)

-2 -2 -2
-2

Das entsprechende gilt für B2. Die Kurve A 0 zerfällt in drei

ausgeartete Kegelschnitte des Büschels, jeder bestehend aus zwei Geraden.

Jeder dieser ausgearteten Kegelschnitte liefert eine Ausnahmefaser vom Typ

-2

Schließlich müssen noch die Kegelschnitte des Büschels betrachtet

werden, welche durch die sechs Schnittpunkte von cr2 0 und <r3 0

gehen. Es handelt sich um drei Kegelschnitte. Jeder berührt o2 0 in
zwei Punkten (nämlich in den Schnittpunkten einer der Komponenten
von <r3 0 mit o2 0). Die Schnittzahl des Kegelschnitts mit C in diesen

beiden Punkten ist jeweils gleich 2, da C in diesen Punkten eine Spitze
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hat. Die 2-blättrige Überlagerung eines solchen Kegelschnittes hat deshalb

2 Komponenten, die zusammen mit zwei der Konfigurationen^(8) eine

Ausnahmefaser vom Typ

bilden. Es gibt also zwei Ausnahmefasern vom Typ (9), drei vom Typ (10)

und drei vom Typ (11). Die Summe der Eulerzahlen der Ausnahmefasern

ist in der Tat 2-6 + 3- 2 + 3- 6=:36. Die Picardsche Zahl von Y (L)
ist 29 oder 30 h1,1.

§ 4. Es sei (9 der Ring der ganzen Zahlen des reell-quadratischen
Zahlkörpers K. Die Gruppe G SL2 ($)/{ ± 1 } nennt man die Hilbertsche

A

Modulgruppe des Körpers. Die erweiterte Hilbertsche Modulgruppe G

wird so erklärt: Es seien U die Gruppe der Einheiten und U+ die Gruppe
der total-positiven Einheiten von (9. Es ist

G {(acbd)\a,b,c,de(9,ad-bceU+ } / {{a0°a)\aeü}
A

Die Gruppe G ist eine Erweiterung von G vom Index 2, wenn (9 keine
A A

Einheit negativer Norm besitzt. Sonst ist G G. Die Gruppe G operiert
auf H2 und auf H x H~, wo H die obere und H~ die untere Halbebene

von C ist. Es sei t die Involution (zl5 z2) i-> (z2, zx) von H2 bzw. (zl5 z2)

i->( —z2, — zx) von H x H~. Die auf H x H bzw. H x H~ operierende
A A A

Gruppe GuGt wird mit Gx (symmetrische Hilbertsche Modulgruppe)
A

bezeichnet. Wenn r eine Untergruppe von G von endlichem Index ist,
dann sind H2jr und (.H x H~)/T wohldefiniert. Sie lassen sich durch
endlich viele Punkte kompaktifizieren (Hinzufügung der Spitzen).

Auf den so erhaltenen kompakten Flächen H2/r und (H x H~)/r
operiert die Involution t, wenn im Falle H2 der nicht triviale Automor-



— 74 —

phismus i des Körpers K die Gruppe F in sich überführt und wenn
im Falle H x H~ für A e F auch ± J) A' fj zu F gehört.

Die Quotientenräume (FT2/F)/t und ((FT x FT~)/F)/t lassen sich auch
als Kompaktifizierung von FT2/Ft bzw. (FT x H~)jTx interpretieren,

wo Ft r u Ft ist. Diese Quotienten nach r werden mit FF2/FT bzw.

(FT x H~)/rx bezeichnet.

Die Fläche iF2/F hat Singularitäten, nämlich die hinzugefügten Spitzen
und Quotientensingularitäten, das sind Punkte von FT2/F, die von Punkten
in H2 herrühren, wo F eine nicht triviale Isotropiegruppe hat. Löst man
alle Singularitäten in kanonischer minimaler Weise auf, dann erhält man
eine singularitätenfreie algebraische Fläche Yr, die Hilbertsche Modulfläche

zu F. Entsprechendes gilt für die Aktion of H x H~. Wir gelangen
so zu einer Fläche Yf.

Die in § 2 angegebenen Beispiele sind Hilbertsche Modulflächen Yr
oder Yy abgesehen von Beispiel 1. Für die Beispiele 2, 3, 4 werden wir
jetzt die Gruppe F angeben. Die Identifizierung von Yr oder Yp mit Y(L)
geschieht, indem man in Yr bzw. Yp Kurven findet (z.B. gegeben durch die

Diagonale zx z2 von H2 bzw. z± —z2 von H x H~), die Geraden
oder Kegelschnitten unserer Konfiguration entsprechen. Einzelheiten zu

Bsp. 2 findet man in [6].

Bsp. 2. Der Körper K ist Q (\/2). In SL2 (0) betrachte man die

Hauptkongruenz-Untergruppe F (2) zum Ideal (2). Dann ist F (2)/{ ± 1 }
ein Normalteiler F (2) vom G SL2 ($)/{ + 1 } vom Index 48. Die
Gruppe F sei definiert als die Untergruppe von G, die von F (2) und dem

Element y e G erzeugt wird, das durch die Matrix

a+yfi 0 _\
V 0

repräsentiert wird:
F F (2) u F (2) y

Die Gruppe F ist eine Erweiterung von F (2) vom Index 2. Sie operiert
frei auf H2.

Die Fläche X (L) kann mit H2/r identifiziert werden. Die Spitzen

von H2/r entsprechen den sechs singulären Punkten von X (F). Die Fläche

Y (L) ist isomorph zu Yr.

Die Gruppe G/F ist isomorph zu S4. Sie operiert auf FT2/F und auf

Yp. Die durch die Involution (zlf z2) ^ (z2, zx) von H2 auf H2/F und auf
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Yr induzierte Involution t ist mit jedem Element von GjT vertauschbar.
Sie entspricht der Decktransformation von X (L). Man erhält so die

Operation von Gjr ^ S4 auf H2/rx £ P2 (C), von der wir ausgegangen waren.

Außerdem folgt, daß der komplexe Raum H2!GX isomorph ist zum Orbitraum

P2 (C)/S4.
Die Hilbertsche Modulfläche Fr(2) ist eine unverzweigte 2-blättrige

Überlagerung von Yr und zwar ist Yr(2) eine K3-Fläche mit 8

aufgeblasenen Punkten (vgl. [1]).

Bsp. 3. Der Körper K ist Q 3). Die Gruppe G hat den Normalteiler

r (2), womit wir auch in diesem Fall die Hauptkongruenz-Untergruppe von
SL2 {(9) zum Ideal (2) modulo { ± 1 } bezeichnen. Wie erweitern F (2)
mit Hilfe des durch die Matrix

/2 + V3 0 _\
V 0 2 — ^/3

gegebenen Elements y e G und definieren wieder

r f (2) u f (2) y

Die Fläche X (L) kann mit {H x H~)/T identifiziert werden. Dabei
entsprechen die 6 singulären Punkte von X(L), die durch eine Konfiguration

-2

-3 -3

-2

aufgelöst wurden, den Spitzen von x H~)jr, während die übrigen
acht Singularitäten den acht F-Äquivalenzklassen in H x H~ von Punkten
mit Isotropiegruppe der Ordnung 2 zugeordnet sind. Fläche

isomorph zu Yf. Wie in Beispiel 2 können wir die Involution r auf
(H x H~)/r und auf Yr einführen, die wieder mit jedem Element von
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G/F vertauschbar ist und der Decktransformation von X (L) entspricht.
Es gilt

(12) (H x JFWr~?i(Q x PJC),
wobei G/r isomorph ist zu V4, und (12) eine äquivariante Isomorphic ist.
Die Operation von S4 auf Px (C) x p1 (C) ist dabei so zu beschreiben:
S4 operiert auf P1 (C) ^ Fundamentalkegelschnitt cz P2 (C) durch
Einschränkung der Aktion auf P2 (C) auf den Fundamentalkegelschnitt,
und S4 operiert auf Pt (C) x P1 (C) durch g (u, v) (g (w), g (^)) für
g e S4 und u, v e Px (C). Es folgt

(13) (HxH~)IGt (P, (C)xP, (C
A

Wir führen nun die erweiterte Hilbertsche Modulgruppe G ein. Es
A A

ist [G : G] 2. Die Gruppe G/F ist eine Erweiterung von G/F vom Index 2,
A

in der Tat ist G\F das direkte Produkt von G\F und einer Gruppe der

Ordnung 2, deren nicht triviales Element o durch ein Element der Ordnung 4
A

von G gegeben wird, dessen Quadrat in F liegt, und das bis auf einen Faktor
durch die Matrix

n+yß 2 _\
V -2 1 -N 3'

repräsentiert wird. Das Element g operiert auf (H x H~)jFx und bei
der Isomorphic (12) geht diese Operation in die Vertauschung der Faktoren
von P1 (C) x px (C) über. Deshalb folgt

(14) (H x H~/Gr =P2(C)/S4

Bsp. 4. Der Körper K ist Q Q/3). Die Gruppe T ist die Elauptkon-
gruenz-Untergruppe von SL2 (0) zum Ideal (%/3),die auch als Untergruppe
von G angesehen werden kann.

Die Fläche X (.L) kann mit H2jF identifiziert werden. Dabei
entsprechen die vier Singularitäten von X (L), die in eine Konfiguration (7)

aufgelöst wurden, den Spitzen von H2\F, während die 6 Singularitäten
von X (E), die in eine Konfiguration (8) aufgelöst wurden, den sechs

Quotientensingularitäten von H2jr der Ordnung 3 entsprechen. Die Fläche

Y (.L) ist mit Yr zu identifizieren, in [1] wurde diese Fläche mit T(12, ^/3)
A

bezeichnet. Die Gruppe G/T ist isomorph zu ^44, während G/F isomorph
zu G4 ist.
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Es folgt wieder

(15) hW<=P2(C)M4
h2/gx =p2(C)/s4

Bemerkung: In den Beispielen 2, 3, 4 ist die Verzweigungskurve in

P2 (C) von der Ordnung 10, das hat zur Folge, daß homogene Polynome

vom Grad r in den xt(/=1,..., 4) (mit <t, 0) als Modulformen vom
Gewicht r für Faufgefaßt werden können (vgl. [6]). Daraus können ins-

A

besondere die graduierten Ringe M der Modulformen für Gx bzw. Gx in

den Beispielen 2, 3, 4 bestimmt werden. Die Ringe M sind so erklärt wie

bei Gundlach [2]. Es gilt (vgl. [2], Sätze 1, 3, 2): Wenn K Q (-^2) und

Gx auf H2 operiert, dann

M C[ör25ö-4,ö-3,(73zd]

modulo einer Relation, die sich aus der Darstellung von A2 als Polynom
in a2, or3, er4 ergibt.

Wenn K Q (^/l) und GT auf H x H~ operiert dann

M ^ 0-4,0-3]

a
Wenn K Q (v'3) und GT auf H2 operiert, dann

M C [cr2,o-3,o-4]

§ 5. Bei den Überlegungen in § 4 spielten die Symmetriegruppen
des Tetraeders und S4 des Oktaeders eine Rolle. Wichtig war, daß das

betrachtete Ideal, bezüglich dessen die Kongruenz-Untergruppe r gebildet
wurde, die Diskriminante teilt. Daraus folgte, daß die Involution t mit

A

jedem Element von G/T vertauschbar ist. Diese Bemerkung ist in vielen
anderen Fällen nützlich. Hier soll nur noch ein Beispiel erwähnt werden,
das in [6] ausführlich besprochen wurde. Es handelt sich um die Symmetriegruppe

A 5 des Ikosaeders. Sie operiert auf P2 (C), die Aktion kommt von
einer 3-dimensionalen Darstellung von A5. Der Ring der invarianten
Polynome (vgl. [6]) wird nach Felix Klein von Polynomen A, B, C, D der
Grade 2, 6, 10 bzw. 15 erzeugt. Klein gibt eine ganz bestimmte Kurve
C 0 an. Sie ist irreduzibel, hat sechs Doppelspitzen und ist deshalb
nach der Plückerschen Formel rational. Die 2-blättrige Überlagerung
entlang der Kleinschen Kurve L (gegeben durch C 0) ergibt eine Fläche
X (L) mit sechs singulären Punkten. Nach Auflösung der Singularitäten
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ergibt sich eine algebraische Fläche Y (L), die man als rational nachweisen
kann.

Es sei nun K Q (y/S) und r die Hauptkongruenz-Untergruppe von
G SL2 ($)/{ ± 1 } zum Ideal (^/5). Dann ist H2IT isomorph zu X (L),
wobei die sechs singulären Punkte von X (L) den Spitzen von H2jr
entsprechen. Ferner ist Yr mit Y (L) zu identifizieren. Es ist

(16) H^/Tt^P2(C)
h^/Gt^p2(C)M5

und der Ring M der Modulformen zu Gx ist gegeben durch

(17) M s C[A,B, C,D]

modulo einer von Klein angegebenen Relation, die D2 als Polynom
in A, B, C ausdrückt.
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