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UBERLAGERUNGEN DER PROJEKTIVEN EBENE
UND HILBERTSCHE MODULFLACHEN'?

by F. HIRZEBRUCH

Wir werden in diesem Vortrag einige verzweigte Uberlagerungen der
projektiven Ebene als Beispiele von reguliren algebraischen Flichen
angeben, sie in die Enriques-Kodaira Klassifikation (gemédf der Kodaira-
Dimension) einordnen und diese Beispiele, wenn mdglich, mit Hilbertschen
Modulflichen identifizieren. Beweise werden fortgelassen oder nur skizziert.

Fiir algebraische Flichen allgemein siche [8], [10]. Zur Klassifikation
Hilbertscher Modulflichen vergleiche [3], [4], [5], [1], [6].

§1. Eine grobe Klassifikation der kompakten komplexen Mannig-
faltigkeiten geschieht mit Hilfe der Kodaira-Dimension. Es sei X eine
kompakte komplexe Mannigfaltigkeit der Dimension » und K das kano-
nische Biindel von X. Die Dimension des C-Vektorraumes H° (X, Q (K"))
der holomorphen Schnitte von K" (r = 1) wird mit P, bezeichnet (r-tes
Plurigeschlecht, P; = p, ist das geometrische Geschlecht). Man hat eine
,,meromorphe Abbildung® von X in den komplexen projektiven Raum der
Dimension P, — 1 definiert mit Hilfe einer Basis von H° (X,Q(K’)).
Die Kodaira-Dimension x (X) ist das Maximum der Dimensionen der
Bilder aller dieser r-fach kanonischen Abbildungen. Sie kann die Werte
—1,0, ..., n annehmen, wobei k¥ (X) = —1 genau dann, wenn alle P, = 0.
Die Kodaira-Dimension ist eine bimeromorphe Invariante.

Wir betrachten reguldire algebraische Flichen X, wobei reguldr bedeutet,
daBl die erste Bettische Zahl von X verschwindet. Eine solche Fliche X
ist rational genau dann, wenn x (X) = —1. In den Fillen «(X) = 0
gibt es in der birationalen Aquivalenzklasse von X ein bis auf biholomorphe
Aquivalenz eindeutig bestimmtes minimales Modell X,, das heiBt eine
algebraische Fliche, die keine exzeptionellen Kurven (singularititenfreie
rationale Kurven der Selbstschnittzahl — 1) enthdlt. Von X ausgehend kann
man X, erreichen, indem man in X alle exzeptionellen Kurven niederblist
(sie sind automatisch disjunkt), in der dann erhaltenen Fliche alle exzep-

1) Vorgetragen im Kolloquium fiir Topologie und Algebra, Ziirich, April 1977.




64 —

tionellen Kurven niederbldst usw. bis man nach endlich vielen Schritten
zu X, kommt.

Die erste Chernsche Klasse ¢; € H* (X, Z) ist bis auf das Vorzeichen
gleich der charakteristischen Klasse von K. Die Zahl ¢} [X], auch kurz
mit ¢ bezeichnet, ist eine wichtige Invariante. Die Klassifikation von
Enriques-Kodaira (fiir minimale reguldre Flichen X mit k (X) = 0) besagt:

Kk = 0 < X ist eine K3-Fliche (¢; = 0) oder eine Enriques-Fliche
(c; #0, 2¢; = 0)

Kk = 1 < X laB}t eine eindeutig bestimmte elliptische Faserung iiber der
projektiven Geraden P, (C) zu. Die Chernsche Klasse c;
ist als rationale Kohomologieklasse # 0 und wird bis auf
einen Faktor durch eine Faser reprisentiert. Es ist c¢; = 0

k=2<c¢i>0

(Flachen mit k = 2 nennt man vom allgemeinen Typ).

Alle K3-Fldachen sind zueinander diffeomorph. Ein Standardbeispiel ist

~die Fliche x5 + x7 + x5 + x5 = 0 in P, (C). Die Fundamentalgruppe

einer Enriques-Fliche hat die Ordnung 2. Die universelle Uberlagerung
ist eine K3-Flache. '

§ 2. Wir betrachten die folgende Konfiguration in der reellen projek-
tiven Ebene, bei deren Deutung mir I. Naruki geholfen hat.

Man wihle 4 Geraden in allgemeiner Lage und bezeichne die 6 Schnitt-
punkte mit py, ..., pg. Verbindet man jeden Punkt p; mit demjenigen Punkt
pj, mit dem p; noch nicht verbunden ist, dann erhélt man drei Geraden
(die Diagonalen des vollstindigen Vierseits) mit drei Schnittpunkten
41> 42, ¢3. Danach verbindet man jeden Punkt p; mit demjenigen ¢;, mit
dem p; noch nicht verbunden ist. Man erhilt sechs Geraden, von denen sich
zwel in jedem g¢; und drei in jeweils 4 weiteren Punkten ry, r,, r3, r, schnei-
den. Es gibt genau eine projektive Transformation der projektiven Ebene,
welche eine vorgegebene Vertauschung der 4 Geraden bewirkt. Deshalb
ist die Gruppe der projektiven Automorphismen unserer Konfiguration
isomorph zur symmetrischen Gruppe S,. Die p;, die g;, die r; bilden jeweils
einen Orbit. -

Man kann die Konfiguration auch so erhalten. Es sei W ein Wiirfel
im R® mit dem Ursprung 0 als Mittelpunkt. Die Eckpunkte des Wiirfels,
die Mittelpunkte der Kanten, die Mittelpunkte der Seiten verbunden mit



0 definieren 4 bzw. 6 bzw. 3 eindimensionale Teilriume des R>® und damit
Punkte von P?(R). Dies sind die Punkte r;, p;, ¢;; die Gruppe S, wird als

~ Automorphismengruppe von W in SO (3) eingebettet. Es seien &, &,, &,

die Standardkoordinaten des R®. Die quadratische Form &7 + &3 + £3

L’Enseignement mathém., t. XXIV, fasc. 1-2. 5




bleibt also bei den Operationen von S, invariant. Wir erweitern die relle
projektive Ebene zur komplexen projektiven Ebene P, (C), homogene
Koordinaten &, &,, &;. Der Kegelschnitt 2 + £2 + ¢3 = 0 bleibt unter
S, invariant. Er hei3t Fundamentalkegelschnitt. Zu jedem Element A
A € SO (3) kann man den Kegelschnitt

<& A+4HYE> =0

einfithren. Von besonderem Interesse sind die Kegelschnitte, die zu den
Elementen von S, < SO (3) gehoren. Wir betrachten die drei Kegelschnitte
E., E,, E;, die zu den drei Involutionen der alternierenden Gruppe A,
und die vier Kegelschnitte F,, F,, F5, F, die zu den 4 Zyklen der Linge 3
von A, gehoren. (Zu jedem Zyklus gehoren zwei nicht triviale Elemente
von A,, sie sind invers zueinander und definieren deshalb denselben Kegel-
schnitt). Die Kegelschnitte E;, F; sind nicht ausgeartet. Rechnerisch 146t
sich die Konfiguration der oben angegebenen Geraden zusammen mit den
Kegelschnitten besser behandeln, wenn man im C* (Koordinaten x,, x,, X3,
x,) den Unterraum x, + x, + x; + x, = 0 einfiihrt und dafiir die pro-
jektive Ebene betrachtet. Die Gruppe S, operiert auf

le(C) = {xeP;(O)|x; +x, +x3 +x, =0}

durch Permutation der homogenen Koordinaten. Es sei g; die i-te ele-
mentarsymmetrische Funktion der x;.

Dann gilt
o, =0
g, =0 ist der Fundamentalkegelschnitt.
gy =0 ist die Vereinigung der 3 Diagonalen.
g, =0 ist die Vereinigung der 4 urspriinglich gegebenen

Geraden unserer Konfiguration (vollstindiges
Vierseit).
A = 1] (x;—x;) = 0ist die Vereinigung der im letzten Schritt durch

i<j Verbindung von p; mit g; konstruierten sechs
Geraden.

Die Kegelschnitte E,, E,, E; sind gegeben durch

(1) x1x2 -+ x3X4 = 0, x1X3 -+ X2x4 = O, XIX4 -+ x2X3 = 0 .
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Der Kegelschnitt F,, der zum Zyklus (123) (4) gehoren moge, hat die
Gleichung

(2) X{Xy + XpX3 + X3X; + x; =0,

entsprechend fiir Fy, F,, F;.

Die Kegelschnitte E,, E,, E; schneiden sich nur in den Punkten
p; (=1, ..., 6) gegeben durch (0,0, 1, —1) und Permutationen, und zwar
beriihren sich in jedem p; genau zwei dieser Kegelschnitte.

Die Kegelschnitte Fy, F,, F3, F, schneiden sich nur in den Punkten
g: (i=1, 2, 3) gegeben durch (1,1, —1, —1) und Permutationen, und zwar
geht jeder Kegelschnitt F; durch jeden Punkt g;, wobei das Schnittverhalten
in jedem ¢; wie folgt ist

€)

(zwel einfache Beriihrungen, sonst transversale Schnitte).

Neben dem Fundamentalkegelschnitt gibt es noch zwei Kegelschnitte
B,, B,, die bei der Gruppe A, in sich iibergehen, wihrend sie durch ein
Element von S, ungeradem Signums vertauscht werden. (Es sei p =

exp (2ni/3)).
(4) By (%1 +x5) (x3 +x4) + p (X1 +X3) (X3 +x4)
+ p? (X +x4) (X, +x3) = 0

B, (x1+%,) (%3 +%x4) + p7 (xq +x3) (X5 +X4)
+ p(xg+x4) (X2 +x3) =0

Diese quadratischen Ausdriicke kommen als Lagrangesche Resolventen
in der Theorie der Gleichung 4. Grades vor. Sie sind Semi-Invarianten
fiir 4, beziiglich der beiden nicht-trivialen Charaktere von 4,, die wegen
des Isomorphismus A,/V, = Z/3Z existieren, wobei V, die Kleinsche

i Vierergruppe ist. Die Kegelschnitte B;, B, gehen durch die 4 Punkte
m ry, ..., 4 gegeben durch (1, 1, 1, —3) und Permutationen. Sie bilden eine
. Basis des Biischels der durch ry, r,, rs, , gehenden Kegelschnitte. SchlieB-
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lich werden wir noch eine irreduzible Kurve der Ordnung 6 benutzen,
nimlich die Kurve

(5) C: 803 +2705 =0

Diese Kurve hat in den 4 Punkten r; einen gewohnlichen Doppelpunkt
und in den 6 Schnittpunkten von o; = 0 mit dem Fundamentalkegelschnitt
g, = 0 eine Spitze. Nach der Pliickerschen Formel hat C das Geschlecht 0.

§ 3. Zu jeder Kurve L geraden Grades in P, (C) gibt es eine wohl-
definierte doppelte Uberlagerung X (L) von P, (C) mit L als Verzweigungs-
kurve. Die Flache X (L) hat singulare Punkte iiber den singuldren Punkten
von L. Lost man die Singularititen von X (L) in der kanonischen mini-
malen Weise auf, dann erhdlt man eine singularititenfreie algebraische
Fliche Y (L), die wir in Beispielen untersuchen wollen. Es kommt vor,
dall Y (L) nicht reguldr ist (vgl. [10] Chap. VIII); in allen unseren Beispielen
kann man nachweisen, dal Y (L) reguldr ist.

Bsp. 1. Die Verzweigungskurve L sei 4 = 0. Dies ist eine Kurve
6. Ordnung (zerfallend in 6 Geraden) mit ¢, ¢,, g5 als Doppelpunkten,
¥y, ..., Iy als Tripelpunkten und keinen weiteren Singularitdten. Entsprechend

~

hat X (L) sieben singuldre Punkte g;, r;. Die Punkte g; werden bei der
Auflosung aufgeblasen in eine singularititenfreie rationale Kurve der

~

Selbstschnittzahl —2, wihrend r; aufgeblasen wird zu einer Konfiguration
singularitdtenfreier rationaler Kurven mit folgendem Schnittverhalten

-2 -2 -2

(6)

Die Fliche Y (L) ist eine K3-Flidche. Durch die Auflosung der singulidren

Punkte ¢, r; hat man 3 + 4-4 = 19 algebraische Zyklen auf Y (L),
die als rationale Homologieklassen linear-unabhingig sind bei negativ-
definiter Schnittform. Da jede algebraische Fldache einen ,,Hyperebenen-
schnitt“ mit positiver Selbstschnittzahl besitzt, ist die Picardsche Zahl
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(Maximalzahl algebraischer Zyklen, die als rationale Homologieklassen
linear unabhingig sind) mindestens 20 und deshalb genau gleich 20, weil
fiir eine K3-Fliche A% = 20 ist. Fiir K3-Flichen mit maximaler Picard-

zahl siehe [9].

Bsp. 2. Die Verzweigungskurve L bestehe aus den 4 Geraden o, = 0
und den drei Kegelschnitten E,, E,, E5. Dies ist eine Kurve L der Ordnung 10
mit genau 6 singuldren Punkten, ndmlich den Punkten py, ..., ps. In jedem
p; sieht die Verzweigungskurve so aus

Entsprechend gibt es in X (L) sechs singuldre Punkte p, ..., ps. Die
Auflosung jedes dieser singuldren Punkte wird durch ein Diagram

-2

dargestellt (zwei singularitdtenfreie rationale Kurven mit Selbstschnittzahl
—4, —2). Solche zyklischen Konfigurationen kommen als Auflosungen
der Spitzen Hilbertscher Modulflichen vor ([3], vgl. auch [6], wo Singulari-
titen der Form Z? = F (X, Y) betrachtet werden) und immer, wenn eine
zyklische Konfiguration auftritt, kann der Verdacht entstehen, dal} es
sich um eine Hilbertsche Modulfliche handelt.

Man kann beweisen, daB Y (L) vier disjunkte exzeptionelle Kurven
enthdlt, ndmlich die Urbilder der vier Geraden o, = 0, und Y (L) nach
Niederblasen dieser 4 Kurven eine Enriques-Flache als minimales Modell
Y, (L) ergibt.

Bsp. 3. Hier handelt es sich um eine vierblittrige Uberlagerung von
P, (C). Wir nehmen zunichst die 2-blittrige Uberlagerung entlang des
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Fundamentalkegelschnitts. Das Ergebnis ist isomorph zu P, (C) x P, (C),
wobei der Fundamentalkegelschnitt der Diagonale entspricht.

In dieser Fldche betrachten wir als Verzweigungskurve L das Urbild
der Vereinigungsmenge der 4 Kegelschnitte F,, F,, F;, F,. Da jedes F;
den Fundamentalkegelschnitt in 2 Punkten beriihrt, besteht L aus 8 Kom-
ponenten (jede einzelne Komponente kann als Graph einer gebrochenen
linearen Transformation P, (C) — P, (C) angesehen werden). Die Kurve
L in P, (C) x P, (C) hat die folgenden Singularitéten:

a) 6 singuldre Punkte vom Typ (3), diein P, (C) X P, (C) iiber g4, ¢,, g5
e P, (C) liegen

b) 8 Doppelpunkte, die aus den Beriihrungspunkten der F; mit dem
Fundamentalkegelschnitt entstehen.

Wir bezeichnen die doppelte Uberlagerung von P, (C) x P, (C)
entlang L mit X (L). Sie hat 14 singuldre Punkte. Die unter b) angegebenen
acht Singularitdten von L liefern singuldre Punkte von X (L), die alle in
eine singularititenfreic rationale Kurve der Selbstschnittzahl —2 auf-
geblasen werden, wihrend die unter a) angegebenen sechs singuldren
Punkte von L zu singuldren Punkten von X (L) fithren, die in eine Konfi-
guration '

-2

augeblasen werden. Man erhélt so eine algebraische Fliche Y (L), von der
man nachweisen kann, dal3 sie reguldr ist und Kodaira-Dimension 2 hat |
(allgemeiner Typ). Sie ist fernerhin minimal. Man kann ausrechnen, daf
Y (L) die Eulerzahl 44 und das geometrische Geschlecht p, = 3 hat. Es
folgt A1 = 36. Die Picardsche Zahl p von Y (L) ist nicht bekannt, doch
liefern die Kurven, die von der Auflosung der Singularititen herriihren,
und ein ,,Hyperebenenschnitt die Abschitzung

33 <p <36.




e XA A R N N S,

2
b 2

O BRSO

71 —

Der Vektorraum der homogenen Polynome fiir die Schar der Kegel-
schnitte, die durch ¢, ¢,, q; gehen, 148t sich mit H°(Y (L), 2 (K)) identi-
fizieren in Ubereinstimmung mit p, = 3. Zu diesen Polynomen gehdren
F,, F,, F;, F,. (Beachte, daB die Summe der zugehorigen Polynome (2)
gleich 0 ist.) Die einfach-kanonische Abbildung Y — P, (C) ist gleich der
Uberlagerungsabbildung Y - P, (C) vom Grade 4 gefolgt von einer
Cremona-Transformation.

Bsp. 4. 'Wir betrachten nunmehr als Verzweigungskurve L die Vereini-
gungsmenge C U B, U B, (sieche (4) und (5)). Dies ist wieder eine Kurve
der Ordnung 10. Man kann leicht ausrechnen, dal3 B, u B, durch die
Gleichung o5 + 12 ¢, = 0 gegeben wird. Also ist L die Kurve

(65+120,) (805 +2703) = 0.

Zunichst miissen die singuldren Punkte von L bestimmt werden. Die
Kurven B, u B, und C schneiden sich nur in r, ..., r, und zwar stimmen die |
beiden Tangenten von B, U B, in r; mit den beiden Tangenten von C
in r; Uiberein. Die Kurve L hat also in r; eine Singularitit vom Typ (3).
Deshalb hat die doppelte Uberlagerung X (L) iiber r; eine Singularitit mit
der Auflosung

-2

(7)

-2

die auch schon in Beispiel 3 vorkam. Ferner hat C und damit L jeweils eine
Spitze in den sechs Schnittpunkten von o, = 0 und o5 = 0. Die ent-

sprechenden 6 Singularitdten von X (L) werden aufgelost durch je eine
Konfiguration

-2

(8)
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Die so erhaltene algebraische Fliache Y (L) hat Kodaira-Dimension 1,
sie ist minimal. Sie hat Eulerzahl 36, das geometrische Geschlecht p, ist
gleich 2. Wir werden die elliptische Faserung angeben. Ein von B, B,
verschiedener Kegelschnitt B des durch B,, B, aufgespannten Biischels hat
die Schnittzahl 2 mit C in jedem Punkt r,. Die Summe der Schnittzahlen
von B mit C auferhalb der r; ist deshalb gleich 4. In Y (L) ist also die Uber-
lagerung eines allgemeinen Kegelschnitts des Biischels eine elliptische
Kurve. Damit ist die elliptische Faserung beschrieben. Wir werden noch
die Ausnahmefasern angeben. Fiir die verschiedenen Typen von Aus-
nahmefasern siche [7]. Die Kurve B, bildet mit je einer (—2)-Kurve aus
jeder der 4 Konfigurationen (7) eine Ausnahmefaser vom Typ

-2 -2 -2 -2

©)

Das entsprechende gilt fiir B,. Die Kurve 4 = 0 zerfillt in drei aus-
geartete Kegelschnitte des Biischels, jeder bestehend aus zwei Geraden.
Jeder dieser ausgearteten Kegelschnitte liefert eine Ausnahmefaser vom Typ

(10)

-2

SchlieBlich miissen noch die Kegelschnitte des Biischels betrachtet
werden, welche durch die sechs Schnittpunkte von ¢, = 0 und o3 = 0
gehen. Es handelt sich um drei Kegelschnitte. Jeder beriithrt ¢, = 0 in
zwei Punkten (ndmlich in den Schnittpunkten einer der Komponenten
von ¢; = 0 mit g, = 0). Die Schnittzahl des Kegelschnitts mit C in diesen
beiden Punkten ist jeweils gleich 2, da C in diesen Punkten eine Spitze
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hat. Die 2-bléttrige Uberlagerung eines solchen Kegelschnittes hat deshalb
2 Komponenten, die zusammen mit zwei der Konﬁguratlonen (8) eine
Ausnahmefaser vom Typ

(1)

bilden. Es gibt also zwei Ausnahmefasern vom Typ (9), drei vom Typ (10)
und drei vom Typ (11). Die Summe der Eulerzahlen der Ausnahmefasern
ist in der Tat 2 -6 + 3 -2 + 3 -6 = 36. Die Picardsche Zahl von Y (L)
ist 29 oder 30 = A1,

§ 4. Es sei 0 der Ring der ganzen Zahlen des reell-quadratischen Zahl-
korpers K. Die Gruppe G = SL, (0)/{ + 1} nennt man die Hilbertsche

Modulgruppe des Korpers. Die erweiterte Hilbertsche Modulgruppe G
wird so erkldrt: Es seien U die Gruppe der Einheiten und U™ die Gruppe
der total-positiven Einheiten von (. Es ist

G = {(ﬁf})la,b,c,de@,ad—bce uty/{Gs

A
Die Gruppe G ist eine Erweiterung von G vom Index 2, wenn @ keine

Einheit negativer Norm besitzt. Sonst ist 8 = G. Die Gruppe /C\? operiert
auf H? und auf H x H~, wo H die obere und H~ die untere Halbebene
von C ist. Es sei t die Involution (zy, z,) = (z,, z,) von H? bzw. (zy, z,)
> (— zz, zl) von H x H™. Die auf H X H bzw. H X H~ operierende

- Gruppe G v Gr wird mit G (symmetrische Hllbertsohe Modulgruppe)

bezeichnet. Wenn I' eine Untergruppe von G von endlichem Index ist,
dann sind H?/I' und (H x H ™)/ wohldefiniert. Sie lassen sich durch
endlich viele Punkte kompaktifizieren (Hinzufiigung der Spitzen).

Auf den so erhaltenen kompakten Flichen H?/I' und (H x H™)/I
operiert die Involution 7, wenn im Falle H? der nicht triviale Automor-
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phismus x — x" des Korpers K die Gruppe I in sich iiberfithrt und wenn
im Falle H x H™ fiir AeT auch + (7¢g9) A’ (73 3) zu I' gehort.

Die Quotientenrdume (H?/I')/z und ((H % H ~)/I')/t lassen sich auch
als Kompaktifizierung von H?/I", bzw. (H x H™)/T', interpretieren,

wo I', = I' u I't ist. Diese Quotienten nach 7 werden mit _}72_/}; bzw.
(H x H7)/I', bezeichnet.

Die Flidche H?/I" hat Singularititen, nimlich die hinzugefiigten Spitzen
und Quotientensingularititen, das sind Punkte von H?/T", die von Punkten
in H? herriihren, wo I' eine nicht triviale Isotropiegruppe hat. Lost man
alle Singularitdten in kanonischer minimaler Weise auf, dann erhilt man
eine singularitdtenfreie algebraische Fliche Y, die Hilbertsche Modul-
flache zu I'. Entsprechendes gilt fiir die Aktion of H X H~. Wir gelangen
so zu einer Fliche Y.

Die in §2 angegebenen Beispiele sind Hilbertsche Modulflichen Y,
oder Y., abgesehen von Beispiel 1. Fiir die Beispiele 2, 3, 4 werden wir
jetzt die Gruppe I' angeben. Die Identifizierung von Y oder Y mit Y (L)
geschieht, indem man in Y bzw. Y Kurven findet (z.B. gegeben durch die
Diagonale z; = z, von H? bzw. z;, = —z, von H x H~), die Geraden
oder Kegelschnitten unserer Konfiguration entsprechen. FEinzelheiten zu
Bsp. 2 findet man in [6].

Bsp. 2. Der Korper K ist Q (1/2). In SL, (0) betrachte man die

Hauptkongruenz-Untergruppe I' (2) zum Ideal (2). Dann ist I' (2)/{ + 1}
ein Normalteiler I' 2) vom G = SL, (0)/{ + 1} vom Index 48. Die
Gruppe I' sei definiert als die Untergruppe von G, die von I' (2) und dem
Element y € G erzeugt wird, das durch die Matrix

<1+0ﬁ —1-?_\/§>

reprisentiert wird:
r=r2urQy

Die Gruppe I’ ist eine Erweiterung von I" (2) vom Index 2. Sie operiert
frei auf H2.

Die Fliche X (L) kann mit H?|I' identifiziert werden. Die Spitzen
von HZ?|I' entsprechen den sechs singuldren Punkten von X (L). Die Fliche
Y (L) ist isomorph zu Y.

Die Gruppe G/I' ist isomorph zu S,. Sie operiert auf H?/I' und auf
Y;. Die durch die Involution (z;, z,) = (z,, z;) von H? auf H?/T und auf
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Y, induzierte Involution 7 ist mit jedem Element von G/I' vertauschbar.
Sie entspricht der Decktransformation von X (L). Man erhélt so die Ope-

ration von G/I' =~ S, auf HZ/I:T ~ P, (C), von der wir ausgegangen waren.

AuBerdem folgt, daB der komplexe Raum H?|G, isomorph ist zum Orbit-
raum P, (C)/S,.

Die Hilbertsche Modulfliche Y, ist eine unverzweigte 2-bléttrige
Uberlagerung von Y, und zwar ist Yy eine K3-Fliche mit 8 aufge-
blasenen Punkten (vgl. [1]).

Bsp. 3. Der Korper K ist Q ( \/ g). Die Gruppe G hat den Normalteiler
I' (2), womit wir auch in diesem Fall die Hauptkongruenz-Untergruppe von
SL, (0) zum Ideal (2) modulo { + 1} bezeichnen. Wie erweitern I (2)
mit Hilfe des durch die Matrix

2+/3 0
0 2-./3
gegebenen Elements y € G und definieren wieder

I =T ()uTlQ)y

Die Fliche X (L) kann mit (H X H™)/I' identifiziert werden. Dabei
entsprechen die 6 singuldren Punkte von X' (L), die durch eine Konfiguration

-2

-2

aufgelost wurden, den Spitzen von (H x H™)/I', wihrend die ubrigen
acht Singularititen den acht I'-Aquivalenzklassen in H x H ™~ von Punkten
mit Isotropiegruppe der Ordnung 2 zugeordnet sind. Die Fliche Y (L)
ist isomorph zu Yp, Wie in Beispiel 2 kdnnen wir die Involution 7 auf

(H X H7)/I' und auf Y, einfithren, die wieder mit jedem Element von




— 76 —

G/T Vertauséhbar ist und der Decktransformation von X (L) entspricht. ‘

Es gilt
(12) (H x H™)/I'. =P (C) x P (C),

wobei G/I' isomorph ist zu S,, und (12) eine dquivariante Isomorphie ist. {

Die Operation von S, auf P, (C) X P, (C) ist dabei so zu beschreiben:
S, operiert auf P, (C) =~ Fundamentalkegelschnitt < P, (C) durch Ein-
schrinkung der Aktion auf P, (C) auf den Fundamentalkegelschnitt,
und S, operiert auf P, (C) x P, (C) durch g (u,v) = (g (u),g (v)) fir
ge S, und u,v e P, (C). Es folgt

(13) (H x H7)/G, = (P, (C) x P, (C))/S,
Wir fithren nun die erweiterte Hilbertsche Modulgruppe G ein. Es

ist [G : G] = 2. Die Gruppe G/I ist eine Erweiterung von G/I" vom Index 2,

in der Tat ist G/I' das direkte Produkt von G/I' und einer Gruppe der
Ordnung 2, deren nicht triviales Element o durch ein Element der Ordnung 4

von G gegeben wird, dessen Quadrat in I' liegt, und das bis auf einen Faktor
durch die Matrix

1+.3 2
-2 1-/3)
repriasentiert wird. Das Element ¢ operiert auf (H X H ™)/, und bei

der Isomorphie (12) geht diese Operation in die Vertauschung der Faktoren
von P; (C) x P, (C) uiber. Deshalb folgt

(14) (H x H™|G, ~ P, (C)S,

Bsp. 4. Der Korper K ist Q (1/3). Die Gruppe I' ist die Hauptkon-
gruenz-Untergruppe von SL, (0) zum Ideal (4/3),die auch als Untergruppe
von G angesehen werden kann.

Die Fliche X (L) kann mit H?|I' identifiziert werden. Dabei ent-
sprechen die vier Singularitidten von X (L), die in eine Konfiguration (7)

aufgelost wurden, den Spitzen von H?/I', wihrend die 6 Singularititen
von X (L), die in eine Konfiguration (8) aufgelost wurden, den sechs

Quotientensingularititen von H?*/I" der Ordnung 3 entsprechen. Die Fliche
Y (L) ist mit Y, zu identifizieren, in [1] wurde diese Fldche mit Y (12, \/3)

bezeichnet. Die Gruppe G/I ist isomorph zu A,, wihrend G/I" isomorph
zu S, ist. |



77 —

Es folgt wieder
(15) H?|G, = P,(C)/A4

H?/G, = P,(C)/S,

Bemerkung : In den Beispielen 2, 3, 4 ist die Verzweigungskurve n
P, (C) von der Ordnung 10, das hat zur Folge, dal homogene Polynome
vom Grad r in den x;(i=1,...,4) (mit ¢, = 0) als Modulformen vom
Gewicht r fiir I' aufgefalit werden konnen (vgl. [6]). Daraus kéﬂnnen ins-

A

besondere die graduierten Ringe M der Modulformen fiir G, bzw. G, in
den Beispielen 2, 3, 4 bestimmt werden. Die Ringe M sind so erkldrt wie
bei Gundlach [2]. Es gilt (vgl. [2], Sétze 1, 3, 2): Wenn K = Q (\/ 2) und
G, auf H? operiert, dann

M =~ C[o,,0,,05,054]

modulo einer Relation, die sich aus der Darstellung von 4% als Polynom
in ¢,, 05, 0, ergibt. R
Wenn K = Q (\/ 3) und G, auf H X H~ operiert dann

M = C [\/O—-Z«a 04, Gg]

Wenn K = Q (.\/ 3) und G, auf H? operiert, dann
M =~ Clo,,0;3,04]

§5. Bei den Uberlegungen in §4 spielten die Symmetriegruppen A,
des Tetraeders und S, des Oktaeders eine Rolle. Wichtig war, da das
betrachtete Ideal, beziiglich dessen die Kongruenz-Untergruppe I gebildet

wurde, die Diskriminante teilt. Daraus folgte, da3 die Involution 7 mit
A

jedem Element von G/I’ vertauschbar ist. Diese Bemerkung ist in vielen
anderen Fillen niitzlich. Hier soll nur noch ein Beispiel erwidhnt werden,
das in [6] ausfiihrlich besprochen wurde. Es handelt sich um die Symmetrie-
gruppe A5 des Ikosaeders. Sie operiert auf P, (C), die Aktion kommt von
einer 3-dimensionalen Darstellung von A4s;. Der Ring der invarianten
Polynome (vgl. [6]) wird nach Felix Klein von Polynomen 4, B, C, D der
Grade 2, 6, 10 bzw. 15 erzeugt. Klein gibt eine ganz bestimmte Kurve
C = 0 an. Sie ist irreduzibel, hat sechs Doppelspitzen und ist deshalb
nach der Plickerschen Formel rational. Die 2-blittrige Uberlagerung
entlang der Kleinschen Kurve L (gegeben durch C = 0) ergibt eine Fliche
X (L) mit sechs singuldren Punkten. Nach Auflosung der Singularititen




78 —

ergibt sich eine algebraische Fliche Y (L), die man als rational nachweisen
kann.

Es sei nun K = Q (\/ g) und I' die Hauptkongruenz—Unltergruppe von
G = SL, (0)/{ + 1} zum Ideal (\/5). Dann ist H*/I' isomorph zu X (L),

wobei die sechs singuliren Punkte von X (L) den Spitzen von H?/I" ent-
sprechen. Ferner ist Y, mit Y (L) zu identifizieren. Es ist

(16) H*IT. 2 P, (C)

H?/G, = P, (C)/As
und der Ring M der Modulformen zu G, ist gegeben durch
(17) M =~ C[A,B, C,D]

modulo einer von Klein angegebenen Relation, die D? als Polynom
in A, B, C ausdriickt.
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