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A SINGULAR INTEGRAL EQUATION CONNECTED
WITH QUASICONFORMAL MAPPINGS IN SPACE

by Lars V. AHLFORS ')
Dedicated to Albert Pfluger for his seventieth birthday

1. INTRODUCTION

This paper continues the author’s investigation of two differential
operators, S and S*, which arise naturally in the study of infinitesimal
quasiconformal mappings in n dimensions (see References). If Q is open
in R” the operator S acts on functions f: Q — R" and has values Sf'e SM,,
where SM, is the space of symmetric » X »n matrices with zero trace.
Definitions are in Sec. 2.

A key question is the solvability of the inhomogeneous equation
Sf = v. For n = 2, §f can be identified with the complex derivative f; of a
complex-valued function, and the problem is that of recovering f from f£..
As well known, this problem has always a solution, and it is given by the
generalized Cauchy formula, also known as Pompeiu’s formula. For n > 2
the right hand member v, an SM,-valued function, must satisfy certain
conditions, which are known in principle, as limiting cases of the Weyl-
Schouten conditions of vanishing conformal curvature.

These conditions, although explicit, are quite intractable. It is therefore
rather surprising that a necessary and sufficient condition for Sf = v to be
solvable can be expressed as a singular homogeneous integral equation
satisfied by v. This integral equation can be treated by the methods of
Calderon and Zygmund.

2. DEFINITIONS AND NOTATIONS

A quasiconformal homeomorphism F:Q — F(Q) is known to be
differentiable almost everywhere. We denote its Jacobian matrix by DF.
The normalized Jacobian is XF = (det DF)~'/* DF, and MF = 'XF - XF

1) Supported by NSF Grant GP-38886.
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is the normalized and symmetrized Jacobian; it carries the quasiconformal
data of the mapping.

The Riemannian metric ds* = 'dx (MF) dx is conformally flat, a
condition expressed by the vanishing of the conformal curvature tensor.
For n = 3 this tensor is identically zero, but there is instead an integrability
condition.

Let F(x,t) be a one-parameter family of homeomorphisms such that

F(x,0) = x, F(x,0) = f(x). Under suitable regularity conditions (DF),
1 2

= Df, (XF)o =Df — —tr Df - 1,, and (MF)y = Df +'Df — —tr Df - 1,.
n n

This motivates introducing the differential operator S defined by
| 1 1
(Sf); = E(Difj +D;f) — . 0:;; Dy fi -

(The summation convention is in force in this paper). Note that Sf has
values in SM,,.

There is a formal adjoint S* which maps SM -valued functions on
R"-valued functions. It is defined by | B

(S*p); = D;p;;,
and it satisfies
(1) [ Sf-odx = — [ f-S*pdx
2 0

when either f or ¢ has compact support. (Sf. ¢ and f- S* ¢ are the dot
products Sf;; ¢;; and f; (§* ¢),;, respectively; dx is the euclidean volume
element.)

Equation (1) defines Sf and S* ¢ as distributions even if f and ¢ are
not differentiable. We are always assuming that f is continuous and ¢
locally integrable. ’

3. INVARIANCE PROPERTIES

In (1) we prefer to regard ¢ dx as a matrix-valued measure, so that
the pairing
<Sf,pdx > = [ Sf-pdx
2
is between a function and a measure. Similarly, S$* (pdx) = (S*¢p) dx is a
vector-valued measure.
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Let A be a Mobius transformation. We define the pull-backs of vector-
and SM,-valued functions by

(A* ) (x) = (DA™ f(Ax)
(A*¢)(x) = (DA™ ' ¢ (Ax) DA

and for the corresponding measures by

A*(fdx) = |det A |'DAf(Ax)dx
A*(pdx) = |det A|(DA)™ ' ¢ (Ax)DA.

These definitions are chosen so that the pairings are invariant:

< A*f, A*gdx > = <f,gdx >
< A*v, A*pdx > = <v,pdx > .

There is a basic identity
(2) S(A*f)(x) = (DA)™' Sf(Ax) DA

which may be expressed as a commutativity relation SA4* = A* S, appli-
cable to functions, but not to measures. It implies the relation S* 4*
= A* §* which is valid for measures in the sense that

(3) S*(A* ¢ dx) = A*(S* @ dx),

but not for functions. It should be noted that (2) and (3) are true only
because A4 is conformal.

A function is transformed into a measure by multiplication with a
fixed invariant measure p dx. The invariance means that 4* (p dx) = p dx,
or p(Ax)|det DA| = p(x); we assume also that 4 leaves Q invariant.
In these circumstances it makes sense to consider the operator S* p .S
which takes f to S* [p(Sf)dx] and commutes with A* : (S* p S) A*
= A% (S* p S). '

There are three classical cases in which Q is invariant under a transitive
group G (Q) of Mobius transformations:

(1) @ = R". G () 1s the group of euclidean motions, and p = 1.
) =B() ={x: I X [ < 1}. G = G (B) is the group of non-euclidean
motions, and p = (1—|x|>)™" :
(111) € 1s the one-point compactification of R”, identified with S" in R** 1,

The group is formed by the rotations of the sphere, and p
= (1+]x[»™
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4. NON-EUCLIDEAN MOTIONS

The euclidean case was dealt with in [3]. In the present paper we under-
take a more detailed study of the hyperbolic case. The unit ball in R” is
denoted by B, and G is the full group of M&bius transformations mapping B
on itself. The Poincaré metric ds = (I1—|x|>)™"|dx| and the non-
euclidean volume element p dx = (1—|x|2)’" dx are invariant under G.

For A e G we prefer to denote the Jacobian by A4’ (x) rather than
DA (x). We use |A’ (x)| for the linear rate of change, the same in all
directions. This notation has the advantage of leading to formulas which
are easily recognizable generalizations of the familiar formulas for n = 2
in complex notation. [ A" (x) ' is also the square norm of the matrix A" (x),
and |det A" (x) | = | 4" (x) |

Reflection in the unit sphere is denoted by x* = x/ [ X lz. Its Jacobian
is Dx* = |x|7%(1,-20(x)) with Q(x);; = xx;/| x|*; note that
(1,—20(x)* = 1,

For every ye B there is a unique 7, G such that 7,y = 0 and
T,(») =|T,(»] 1, The most general 4€ G is of the form 4 = UT,
with y = 471 (0) and Ue O (n).

For n = 2, in complex notation,

Tx =

- 1 —jx
1 -]yl
1= gy

The first formula can be rewritten as

_G=na=1yP) = Ix=yly

T x
[y P lx —y*|?

y

In this form it makes sense for arbitrary n and is in fact the correct formula.
The denominator |y |*|x — y*|* corresponds to |1 — yx|?, and it is
equal to 1 — 2(xy) + |x|*|»|? where (xy) is the inner product. To
emphasize the symmetry we shall use the notation |y| |x — y*| =
[x]|y—x*[=Ixl |

The expression for T, (x) is

, 1
Ty(x) =
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with
A(x,y) = (1=20()) (1 =20 (x—y*) = (1-20(y—x%)(1 -20 () .

Observe that A4 (x, y) = '4 (y, x) and 4 (x, y)* = 1, so that 4 (x, y) € O (n).
The matrix 4 (x, y) generalizes the angle arg (1 —Xy)/(1— yx).

It is useful to note that | Ax — Ay|* = |4 ()| |4 (W] |x =¥ E
for any Mébius transformation 4, and [dx, Ay]> = | 4" (x)| | 4" ()]
[x, y]> if A€ G. There is an important relation between 7T ,x and T,y
expressed by '

(4) Tyx = —A(xay) Txy

We refer to [2, 3, 4, 5] for the elementary proofs of these formulas.

5. FUNDAMENTAL SOLUTIONS

A continuous mapping f : B — R" will be called a deformation. In this
paper we shall assume, mainly for simplicity, that f is continuous on the
boundary S (1), and that x - f(x) = 0 on S (1); this means that f maps B
on itself when regarded as an infinitesimal mapping.

A deformation is trivial if Sf = 0. There are very few trivial defor-
mations: a complete list is given in [3].

It is customary to say that f is a quasiconformal deformation if || Sf||
e L* (B); here || Sf|| is the function whose value at x is the square norm
of the matrix Sf'(x). More generally, we shall also consider functions with
|| Sf|| € L? (B); we abbreviate to Sfe L?, and we denote the LP-norm of
the square norm by || Sf||,. The same convention will prevail for all
matrix-valued functions.

We shall say that f is harmonic if S*p Sf =0, p = (1—|x]»)™"
Because of the invariance, if f is harmonic and 4 € G, then 4* f is also
harmonic. Harmonicity in this sense is not the same as requiring the com-
ponents to be harmonic with respect to the Poincaré metric.

There are n linearly independent solutions of the equation S*y = 0
which are homogeneous of degree 1 — n. We denote them by y

= 1, ..., n, the elements being

Viga () =[x |7 (0uX; 4+ 6 jux; — 65%,) + (n—2) | x| 7772 xpx %, .

There is a unique vector-valued function g, (x) with components
gir (x) such that g, (x) =0 for |x| =1 and pSg, =y, so that
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S*pSg , = 0, or more precisely a Dirac distribution concentrated at 0.
It is easy to see that g = g;,, which we regard as a Green’s matrix, will be
of the form g,, (x) = a( | x I )0 + b( l X l ) x;x,; the explicit expressions
for a(r) and b (r) are unimportant, except that g is of order O ((1— |x|?)"*")
for | x| — 1 and O (|x|™"*?) for x > 0 (if n = 2 the latter is replaced

by O (log 1/ | x |).
If Ue O (n) it is immediate that g (Ux) = Ug (x)'U. If we replace x
by T,y and U by — 4 (x, y) it follows with the help of (4) that

(5) A4(y,x)g(Tx) = g(Ty)A(y,x).
We now define the Green’s matrix with singularity at y by
Definition 1.
(6)  gu(x,¥) == ]yP)(Ty90(x) =0~ 1y*)T,(x)""g(T,x)
=[x, y1°4(y,%) g (T,x) .

It 1s clear that (S* p S); g (x, y) = 0 (the subscript indicates that the
operator applies to the first variable). In view of (5) we can read off the
symmetry property

LemMA 1. g (x,») = g (¥, X).

This symmetry plays a prominent role in H. Weyl’s classical paper [9]
which has been a strong inspiration for this work.
If A € G it is an easy consequence of (6) that

g (Ax, Ay) = A" (x) g (x, y)'4" (y)
or, in a more suggestive form,
ATAS g (x,y) = g(x,9),

where A7 is A* applied to the first variable and the first index, and simi-
larly for A3.
Next we define

Definition 2.
7o) = p () S, y) = A=y [Dp ) (S:1T59 0 (%)

It is evident by invariance that S} Y..x(x,y) = 0. When x and y are
transformed by the same 4 € G one finds

ATASy. (x,y)dx =7y (x,y)dx
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where A¥ acts on x and the double index, 45 on y and the single index.
For A = T, this leads to the explicit formula

(1= |y Py™?
[X, y:IZn
We note thaty  (x,0) =y, (x)andy  (0,y) = — (1 —IJ’ lz)"ﬂ y.... ()

We shall need to apply S to either variable in y_  (x,y). For this
purpose we introduce

Vo (x,y) = Ay, %)y (T,x)A(x,y) .

Definition 3. I';; . (X, ¥) = [S27:5,. (X5 V)lnk

Because differentiations with respect to x and y commute it is clear
that ST I'._ . (x,») = 0. Moreover, starting from the relation g, (x, y)
= g,; (¥, x) it is not difficult to derive the following symmetry property:

LEMMA 2. p (0) T'ij o (X, 1) = p (%) I i (¥, x).

It follows, in particular, that S5 p (y) T ij... (x,y) = 0.
It is also important to know the asymptotic behavior of I';; ;. (x, )
when x — y — 0. We observe first that

p(¥) Fijw(0,9) = = (A= [y HT"[SA =1y )"y, )]
= == Sij,hk(y) + Rij,hk(y)

where S} .. (¥) = [S7:;.. (D] is homogeneous of degree — n and
R;; wi (¥) is homogeneous of degree 2 — n. The explicit expression for
I';; i (x, y) reads

=y
Iy, (x,y) = ——=5,— 40, ) I;.0, T,y)4(y,x) .
[x, y]
Elementary estimates show that
@) | Ui (X, y) + fSij,hk(x—y) | = Cn l,x, -y [xa)’:rl

with constant C,.

6. POTENTIALS

Given an SM,-valued function v on B we define its potential as the
vector-valued function Iv with components

Iv(y)y = 1; Vij(x)yij,k(xsy)dx-
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The integral converges if v € L? (B) for some p with n < p < oo. In fact,
one proves that

IIV(y)l = Cn,pHV“p(l_ lyl)l—n/p
if p < oo and

[Iv(») [ = ClIvIle (M= 1y D1+ log 1/[(1—|y])

if p = oo0. In any event /v (y) vanishes at a fixed rate for ]y | — 1.

The forming of the potential is an invariant operation in the sense
that 74*y = A*[v for every A € G. The potential is harmonic outside the
support of v, for (S* p S), y;;.. (x,») = O.

The following theorem serves to recover f from Sf and its boundary
values:

THEOREM 1. If SfelL? (B),p > n, then
(8) ¢, f(y) = —ISf(y) + ¢,Hf(y)

with

Hf(y) = cl J Vij,. (an’)xjfidG(x) .

n
S(1)

Moreover, Hf is the unique harmonic function with the same boundary
values as f, and if x -f = 0 on S (1) it can also be written in the form

1 1 — 2\n+1
Hf(y) = C—J : I I_J)J}I)Zn A(x,y)f(x)do(x).

S(1)

Remarks. do refers to the (n— 1)-dimensional measure on S(1), and
¢, = 2(n—1) w,/n where , is the total measure of S (1). We are assuming
that f has a continuous extension to S (1). Actually, this is automatically
true if we assume the side condition in the form x - f(x) > O as | x| - 1,
for it can be shown that Sf'e L? forces fto satisfy a uniform Holder condition.

The proof is a straight-forward application of Stokes’ formula. The
passage from the differentiable to the distributional case is elementary.
The fact that a harmonic function is uniquely determined by its boundary
values can be demonstrated as follows: Suppose that f is harmonic and
zero on S (1). It is readily shown that
j Sf(x)ij Vijk (x)do = 0

S(r)
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for all r. Therefore ISf(0) = 0 and hence f(0) = 0 by (8). If this result
is applied to (T,)* f it follows that f(y) = O for arbitrary y, so that f
is indeed identically zero.

7. COMPUTATION OF Slv

It is easy to show that S .. (») = [Sy;,. (W is a Calderon-
Zygmund kernel for any choice of the indices; in other words, it is homo-
geneous of degree — n, and its mean-value over the unit sphere is 0. If
vel?, 1 <p < oo, it follows by the Calderon-Zygmund theory that the
principal value

pr. v. j vij(x)sij,hk(x_y)dx

B

exists almost everywhere, and that it is the limit in L? (B) of the corre-
sponding truncated integrals. In view of (7) it follows that the integral

9) Iv(y)w = ,1‘; Vij (x) Ly (x,y)dx

will also exist as a principal value almost everywhere. One finds, however,
that the remainder in (7) makes it possible to assert merely that the
principal value is a limit in L?’ for any p’ < p/n. In these circumstances
it is natural to assume that ve L? (B) for all p > 1.

THEOREM 2. If velL? (B) with p > n, then SIveLP (B) for
all 1 < p' < p/n, and

(10) SIv = —by + Iv
where b, = 4 w,/(n+2) and T'v is defined by (9).

Proof. Let ¢ be an SM,-valued test-function. The definition of SIv
as a distribution leads to the following formal computation:

iSIV(y)hkqo(y)hkdy = — iIV(y)kS*q)(y)kdy
= — J S* @ (y)dy ivij(x)vu,k(x,y)dx
- ivij(x)dx J} S*@(Y)k)’ij,k(x»y)dy

= = Jl;vij(x)dx [b, @i (x) — 1!- @ (Ve Tijuc (%, y) dy] .
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The justification, by means of the Zygmund-Calderon theory, is routiné,
and (10) follows.
Taken together, Theorems 1 and 2 lead to a very striking result:

THEOREM 3. An SM,-valued function vel?(B), p>n, is of the
form v = Sf with f =0 on S (1) if and only if it satisfies the homogeneous
integral equation I'v = — a,v with a, = c, — b, = 2(n—2)(n+1) w,/
n(n+2).

Indeed, if v is of this form, Theorem 1 implies ¢,/ = — Iv, hence
¢,y = — Slv, and consequently I'v = (b,—c,) v by Theorem 2. Conversely,
if I'v = — a,v then SIv = — ¢,v by (10), and f = Iv vanishes on S (1).

The point of Theorem 3 is that the solvability of Sf = v (with an extra
condition on f') has been reduced to an integral equation.

THEOREM 4. For any vel?(B),p > n, S*p[[v+a,y] = 0.

Proof. Let f be a vector-valued test-function. Theorem 3 applies to
Sf, and we obtain by use of Lemma 2

| S*pl”v"fdx = — [ p(x) I'v(x); Sf(x);;dx

= — f p(x)Sf(x);dx }; V(P Threyij (¥, x) dy

B

= — ljgp(J’)V(J’)hkdy j Sf(X)ij I'ijpe (x,y)dx

B

= = [ oWy T'SF(Wmdy = a, § p(¥) V(¥ SF(¥)udy

B B

= —a, | S*pv-fdy

B
and hence S*pI'v = — a, S*v.

THEOREM 5. Every v which isin all L? (B) has a unique representation
in the form v = v' +v" where v' and v" arein all L? (B) while v is
in the image of SI and V" is in the kernel of S* p.

As a consequence of Theorems 3 and 4 the representation is given by
¢y = — SIv + (I'v+a,y).

It is unique, for if S/ = I'v + a,v, then S$* p SIv = 0 so that Iv is harmonic
and 0 on S (1), hence identically zero.
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8. AUTOMORPHIC FUNCTIONS AND BELTRAMI DIFFERENTIALS

Although this aspect has not been emphasized it should be clear that
the author is trying to develop a theory which is immediately applicable
to the study of discrete subgroups of G. All the definitions have been chosen
with this in mind, and the relevant theorems for subgroups follow effort-
lessly.

Let G° be a discrete subgroup of G. A vector-valued function f is
automorphic with respect to G° if 4* f = f, or more explicitly 4’ (x) ™! /' (4x)
= f(x) for all 4 € G°. Similarly, an SM, -valued function v will be called
a Beltrami differential for G° if A*v = v, or A" (x)"1 v (4dx) 4" (x) = v (x),
for all 4eG° If v is a Beltrami differential, then A* (pvdx) = pvdx
for all 4 e G° and p v dx is called an nth order differential. The termin-
ology is borrowed from the corresponding notions for n = 2.

If v is Beltrami and in L%, then it is also in L? (B) for all p, and
Theorems 2-5 are applicable. They gain added significance from the fact
that Iv is automatically automorphic with respect to G° (it is easy to show
that A*Iv = I4*y for all v and 4 € G). As a consequence SIv is Beltrami,
and by Theorem 2 the same is true of I'v. It follows that Theorems 2-5
may be interpreted as referring to the quotient space G°\B, provided
that we start from the hypothesis v e L®. In the conclusion we know,
for instance, that

JASIyllPdx = [ || SIv]]|?pedx < oo
B

G°\B

where, by a theorem of Godement,

po(x) = ) A )]

AeG®
1s known to converge.

REFERENCES

[1] Amnrrors, Lars V. Kleinsche Gruppen in der Ebene und im Raume. Festhand zum
70. Geburtstag von Prof. Rolf Nevanlinna, Springer Verlag, Berlin, New York,

1966, p. 7-15.
[2] —— Hyperbolic Motions. Nagoya Math. J. 29 (1967), pp. 163-166.
[3] —— Conditions for Quasiconformal Deformations in Several Variables. Con-

tributions to Analysis. A Collection of Papers Dedicated to Lipman Bers, pp. 19-
25, Academic Press, New York and London, 1974,

[4] —— Invariant Operators and Integral Representations in Hyperbolic Space. Math.
Scand. 36 (1975), pp. 27-43.




— 236 —

[S] —— Quasiconformal Deformations and Mappings in R”. Journal d’Analyse Mathé-
matique 30, (1976), pp. 74-97.

[6] —— On a Class of Quasiconformal Mappings. Sitzungsber. d. Osterr. Akad. d. Wiss.,
Math.-naturw. Ki., Abt. II, 185. Bd., Heft 1-3, (1976), pp. 5-10.

[77 —— A somewhat new approach to quasiconformal mappings in R". Lecture Notes in

Mathematics 599 (1976), pp. 1-6.

[8] REemManN, H. M. Ordinary Differential Equations and Quasiconformal Mappings.
Advances in Mathematics.

[91 WEvL, H. Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig
gestalteten elastischen Korpers. Rend. Circ. Mat. Palermo. 39, (1915), pp. 1-50.
or Selecta, Hermann Weyl, Birkhduser, Basel und Stuttgart, 1956, pp. 59-110.

( Regu le 15 mai 1978)

Lars V. Ahlfors

Harvard University
Cambridge, Mass. 02138
USA

TR T




	SINGULAR INTEGRAL EQUATION CONNECTED WITH QUASICONFORMAL MAPPINGS IN SPACE
	1. Introduction
	2. Definitions and notations
	3. Invariance properties
	4. NON-EUCLIDEAN MOTIONS
	5. FUNDAMENTAL SOLUTIONS
	6. POTENTIALS
	7. Computation of SIv
	8. Automorphic functions and beltrami differentials
	...


