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II. DILATATIONEN VON GRUPPEN

In Kapitel I wurde eine Dilatation einer Kongruenzklassengeometrie als
eine Abbildung 6 der Geometrie definiert, die Unterrdume in parallele
Unterrdume iiberfithrt. Fiir Gruppengeometrien bedeutet das, daB3 ¢ jede
Nebenklasse von jedem Normalteiler von G in eine Nebenklasse desselben
Normalteilers tiberfithrt. Wir betrachten ab jetzt nur die bijektiven Dila-
tationen, d.h. die Bijektionen 6: G — G mit der Eigenschaft

€)) xy"leN<=d(x)d(y)"'eN (N«<G,x,y€().

Wir bezeichnen mit 4 (G) die Gruppe der Dilatationen und mit 4, (G)
= {0ed(G) | 0 (e) = e} die Untergruppe der homogenen Dilatationen.

Die Dilatationen 6: G — G werden auch dadurch charakterisiert, dal3 es
fiir jeden Epimorphismus n: G — G’ eine Permutation ¢’ von G’ mit

(2) S'om =mod

gibt. Offenbar ist 6’ durch 6 eindeutig bestimmt und ist eine Dilatation
von G’. Sei 4 (n) der Homomorphismus 4 (G) - 4 (G’), der 6 auf ¢’
schickt; dann wird 4 zu einem kovarianten Funktor von der Kategorie der
Gruppen und Epimorphismen in die Kategorie der Gruppen. Entsprechend
haben wir den Unterfunktor A4, (n): 4, (G) = 4, (G’). Wenn N ein Nor-
malteiler von G ist, dann liefert die Beschrinkungsabbildung o6 | N, 0e A, (G),
einen Homomorphismus 4, (G) - 4, (N) (aber keinen Funktor).

Beispiele von nicht-homogenen Dilatationen sind die Links- und Rechts-
translationen

I(g): x>gx, 1r(9): x+=>x9 (x,9€0).
Beispiele von homogenen Dilatationen sind die Abbildung

(3) 1:x—->x ' (xeG)

mit 2 =1, 1/(g”") 1 = r(g), sowie die inneren Automorphismen

I(g)r(g)~" (9 € G). Im allgemeinen gilt weder Aut(G) < 4, (G) noch
A, (G) = Aut (G). Folgender Satz gibt Auskunft iiber die Beziehung
zwischen A4, (G) und 4 (G).

SAatz 1. Die Gruppe [(G) der Linkstranslationen und die Gruppe
Ao (G)  der homogenen Dilatationen sind in A (G) komplementir, d.h.
1(G) 4y (G) = 4(G), 1(G) n4y,(G) = {1}. Insbesondere ist A(G)
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als Menge zu G % A, (G) isomorph. Die folgenden Beidngungen fiir G
sind dquivalent :

a) 1(G) <4(6),
b) r(G) < 4(G),
c) 4, (G) = Aut (G).

Falls diese Bedingungen gelten, ist A (G) isomorph zum semidirekten Produkt
G Ix Ao (G). Die Gruppe G ist dann notwendigerweise abelsch.

Beweis. Jede Dilatation de 4 (G) hat eine (offenbar eindeutige)
Zerlegung als Produkt einer Linkstranslation und einer homogenen Dila-
tation, nimlich 6 = I(5 (¢)) - f(8) mit £ () = [(5(e)” ") € 4, (G). Man
verifiziert leicht, daB die Bedingungen a), b), ¢) und die Bedingung, daf}
f:4(G) = 4, (G) ein Homomorphismus ist, jeweils zu der Formel

S(xy) = 0(x)3(e) () (Vx,yeG,0e4d,(0))
dquivalent sind. Falls diese Bedingungen gelten, ist die Folge
1 5>G 5 4(G) 5 4,(G) > 1

exakt und stellt 4 (G) als semidirektes Produkt von G und 4, (G) dar.
SchlieBlich liegt das Element 1 von 4, (G) nur dann in Aut (G), wenn G
abelsch ist, so dal} die letzte Behauptung des Satzes aus c) folgt.

Der nidchste Satz gibt Auskunft iiber die Dilatationen von Gruppen,
die als Vereinigung von Normalteilern, als direkte Summe oder als Gruppen-
erweiterung dargestellt sind. Alle drei Teile werden fiir die Bestimmung der
Dilatationsgruppen abelscher Gruppen bendétigt werden.

SAatz 2. a) Sei G eine Gruppe, G, < G, < ... = G eine Folge von
Normalteilern mit G = U G, und A, (Gy) « Ay (G,) « ... das durch die
Beschrinkungsabbildungen gegebene inverse System. Dann liefern die Be-
schrinkungsabbildungen A, (G) « A, (G,) einen natiirlichen Isomorphismus
p 4, (G) — lim 4, (G,).

b) Sei G = ® G, eine direkte Summe und wn,: G - G, die Projek-

tionen. Dann ist jedes o€ A(G) gleich dem Produkt der Dilatationen &,
= 4 (n,) 6 € A(G,). Insbesondere sind die Homomorphismen II A (n,): A (G)
—>HA(G) und HA (m,): 4, (G)——)HA (G,) injektiv. *

C) Sei 1 > N— G- Q-1 eine exakte Folge von Gruppen. Dann gibt
es einen (nicht-natiirlichen) injektiven Homomorphismus A (G) S— A (N)
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0 A(Q), wobei A(N) 0 A(Q) = A(N)? [x 4(Q) das durch dze Operation
von A(Q) auf Q definierte Kranzprodukt ist.

Beweis. a) Wir haben p (§) = (6 ] G,)n=1. Es ist klar, dal p wohl-
definiert und injektiv ist. Fiir die Surjektivitdt definiere man ein Urbild von
(0 )n=1durch 6 (x) = o, (x), won = n(x)ein beliebiger Index mit x € G, (x)
i1st. Diese Operation von ¢ hingt nicht von n ab; weiter ist klar, da’} ¢
bijektiv ist, und schlieBlich ist mit xy~! € N, N ein beliebiger Normalteiler
von G, auch 6 (x) 6 (») "' € N, denn fiir ein geeignetes n gilt x, y € G, und
somit xpy"'e NnG, d(x)6(y)"t =6,(x)6,(»)"'e NnG, = N.

b) folgt aus der Formel 7, = J,7, (Gleichung (2)). Wir bemerken,
daB fiir 6 € 4, (G) die Dilatation ¢, mit der Beschrinkung ¢ l G, uber-
einstimmt.

c) Fiir jedes g € QO wihlen wir ein Element xqen‘l (g) als Vertreter
fiir die Nebenklassen in G/N. Sei 0 € 4 (G) und sei §’ € 4 (Q) das Bild von ¢
unter 4 (n). Dann bildet 6 die Nebenklasse x, N auf x; ,,N ab, so dal} wir
durch die Formel 6 (x,n) = x5, 0, (n) (g€ Q, ne N) eine Abbildung
6,: N - N definieren konnen. Man sieht sofort, dall J, eine Dilatation
von N ist und daB 6 durch die Dilatationen 6" und 6, (¢ € Q) bestimmt wird.
Somit haben wir eine injektive Abbildung von 4 (G) nach 4 (N)2 x 4 (Q).
Man priift sofort nach, da3 diese Abbildung ein Homomorphismus wird,
wenn man die Menge 4 (N)2 x A (Q) mit der Gruppenstruktur des Kranz-
produktes 4 (N) v 4 (Q) versieht.

Ab jetzt betrachten wir nur abelsche Gruppen und schreiben ent-
sprechend die Gruppenoperation additiv. Dann 148t sich die Bedingung,
daf} eine bijektive Abbildung §: G — G eine Dilatation ist, folgendermalBlen
schreiben:

(4) <x—y>=<dx—06y> (Vx,ye().

(< > bedeutet Erzeugnis.) Gleichwertig hiermit ist die Bedingung: fiir
alle x, y € G gibt es eine Zahl m = m,, € Z, sodal}

| (5 0(x) —6(y) = m(x—y) und (m, o(x—y)) -

Hierbei bezeichnet o (x) die Ordnung von x mit der Konvention o (x) =
fir Elemente unendlicher Ordnung und (m,0) = |m | Fiir homogene
Dilatationen 6 folgt hieraus mit y = 0, daB es fiir alle xe G ein m, e Z
gibt mit

(6) S(x) = mx (mg,o(x)) =1.
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Fiir ein Element x unendlicher Ordnung ist m, = + 1; fiir Torsions-
elemente x ist m, nur mod o (x) bestimmt. Fiir jedes x € G definiert die
Abbildung 8 — m, einen Homomorphismus 4, (G) = (Z/o (x) Z)*. Wir
nennen zwei Elemente x, y € G linear unabhingig, falls <x > n <y >
= {0}. Aus (5) und (6) folgt leicht die niitzliche Bedingung

(7) x, y linear unabhingig = m, = m, (mod (o (x), 0 ())).

Beispiel. Sei G = (Z/pZ)', p eine Primzahl, r = 2. Dann ist 4, (G)
~ (Z/pZ)*: Je zwei Elemente x, y aus G lassen sich durch eine Kette linear
unabhingiger Elemente verbinden, und die haben alle die Ordnung p.
Dabei ist fiir 6 € 4, (G) n, = n, (mod p), also hat jede Dilatation 6 € 4, (G)
die Gestalt x — nx, n # 0 (mod p). Dagegen ist fiir Z/pZ die Dilatations-
gruppe viel groBer: fiir x # y ist Bedingung (4) leer, da x — y invertierbar
ist, also 4 (G) @ S, (symmetrische Gruppe auf p Buchstaben), 4, (G)
~ S,_;. Wir bemerken, dafl wir hiermit auch Beispiele abelscher Gruppen
bekommen, wo die Bedingungen von Satz 1 erfiillt bzw. nicht erfiillt sind.

Mit Hilfe von (5) kénnen wir leicht A, (G) fiir alle abelschen Gruppen
berechnen, die keine Torsionsgruppen sind.

SATZ 3. Sei G ecine abelsche Gruppe, die ein Element unendlicher
Ordnung enthdlt. Dann gilt A, (G) = ZJ2Z, A (G) = G |x (Z]2Z), wobei
die Operation des nicht-trivialen Elements von Z/2Z. auf G durch x - — x
gegeben wird.

Beweis. Die Formel fiir 4 (G) folgt wegen Satz 1 aus der Beziehung
4y (G) = { £ 1}, die wir erst fiir zwei Spezialfille beweisen.

Fall 1. G = Z.
Fiir 6 € 4, (Z) wissen wir, daB § (x) = + x fiir jedes x € Z. Insbesondere
ist o6 (1) = + 1. Ist etwa 6 (1) = + 1, so folgt aus (5)

0(x) =1 =056() —d6(1) = £ (x—1)
fiir jedes xe Z, x # 1, also
d(x)e{x, =x}n{l +(x-1,1-(x—-1)} = {x}
d.h. 6 = id. Entsprechend ist 6 = — id, falls § (1) = — 1.

Fall2. G =7Z @ Z oder G = Z @ (Z/rZ).
Sei x = (1,0) und § € 4, (G). Indem wir notfalls § durch — § ersetzen,
konnen wir annehmen, daBl J (x) gleich + x ist. Sei nun y = (a,b) e G
beliebig. Wir wollen zeigen, daB 6 (y) = y. Dies gilt nach Fall 1, falls
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b = 0, und nach (7), falls a = 0. Sind @ und » von Null Verschieden, SO
setzen wir z = (g, 0). Dann gilt wegen J (z) = z und (5)

5(y) = m(y—2) +6(2) = m(y—2) + z = (a, mb)

fir ein geeignetes m € Z. Andererseits ist aber 6 (y) = + y, da wegena # 0
das Element y unendliche Ordnung hat. Hieraus folgt 6 (y) = + y, § = id.
Ist nun G eine beliebige abelsche Gruppe, x € G ein festes Element unend-
licher Ordnung und 6 € 4, (G) eine Dilatation mit (0.B.d.A.) § (x) = + x,
so muB} 6 (y) = y fiir jedes y € G sein, da die von x und y erzeugte Unter-
gruppe isomorph Z,Z @ Z oder Z @ rZ ist und die Beschrinkung von ¢
auf diese Untergruppe nach dem bereits Bewiesenen gleich der Identitit.

Fir abelsche Torsionsgruppen lassen sich 4 und 4, auf natiirliche
Weise zerlegen:

SATZ 4. Sei G eine abelsche Torsionsgruppe, G = @ G, ihre kano-

p
nische Zerlegung in p-primdre Gruppen G,. Dann ist A(G) = II A(G),)
und Ay (G) = IT 4, (G)). P
p

Beweis. Wegen Satz 2 b) bleibt nur zu zeigen, dafl der Homomor-
phismus IT 4 (n,): A4 (G)— II 4(G,) surjektiv ist. Sei (0,, 3, Os, -..)

p p
eIl 4(G,). Die Abbildung x = x, + ... + x, 6, (x,) + ... +6,(x,)
p

ist eine Dilatation, denn fiir x = x, + ... + x,, y =y, + ... + y,€G
gibt es nm,eZ (p=2,3,...,max{rs}), sodaB o, (x,) — I, (»,)
= n, (x,— y,) und n, invertierbar mod (o (x,— ¥,)), und dann gibt es wegen
der Teilerfremdheit der o (x,— y,) eine zu o (x — ) teilerfremde Zahl ne Z
mit n = n, (mod (o (x,— y,))) fiir alle p. Somit ist 6 Dilatation und offenbar
ein Urbild von (d,, d5, ...). Die Behauptung fiir 4, folgt dhnlich.

Die Berechnung von 4 (G) und 4, (G) fiir abelsche Gruppen G wird durch
die Sdtze 3 und 4 auf die Berechnung von 4(G,) bzw. 4,(G,) fiir p-primére
Gruppen G, reduziert, die wir im ndchsten Kapitel durchfiihren. Zuvor bewei-
sen wir jedoch einen Satz iiber abelsche Gruppen von endlichem Exponent.

Sei G eine Gruppe mit endlichem Exponent e. Wir konnen G in der
Gestalt G = (Z/eZ) @ G’ schreiben und setzen f = Exp (G’). Die Zahlen e
und f werden wir ,,die beiden groften (ersten) Torsionskoeffizienten von G*
nennen (in Ubereinstimmung mit der Terminologie fiir endliche abelsche
Gruppen). Unser Hauptresultat iiber Gruppen endlichen Exponents ist,
dall ihre homogenen Dilatationsgruppen nur von diesen beiden ersten

Torsionskoeffizienten abhédngen.
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SATZ 5. Sei G eine Gruppe von endlichem Exponent e, G = (Z[eZ)
® G, Exp (G') = f, n: G —» G’ die Projektion. Dann gilt :

i) Das Bild des Homomorphismus A, (n): 4o (G) = 4o (G") besteht aus
allen Dilatationen von G’ der Gestalt x> mx (meZ,(m,f)=1) und
ist somit zu (Z] fL)* isomorph.

ii) Der Beschrinkungshomomorphismus Ay (G) — Ao (Z[eZ) ist injektiv.
Sein Bild ist die nur von e und f abhdngige Gruppe

Ao (e,f) = {d€dy(ZleZ) |AmeZ, (m,f) = 1, sodaB es fiir alle
x, yeZ/eZ ein neZ gibt mit §(x) — 6(y) = n(x—y)
und n = m(mod f) } .

Diese Gruppe ist eine Erweiterung

(8) 1 Ay (e.f) = Ao (e,f) > (Z/f L)* > 1,

wobei

~

Ao (e, f) = {Sedy(ZleZ)| fiir alle x,yeZeZ gibt es ein n =1
(modf) mit 6 (x) —d(y) =n(x—y)}.

Beweis. Nach Satz 2 b) hat jede Dilatation 6 € 4, (G) die Gestalt
§; X 6, mit 6, € 4y (Z/eZ), 6, € Ay (G'). Sei ae Z/eZ eine Erzeugende.
Dann gibt es nach (6) eine Zahl meZ, (m,e) = 1, mit 0, (@) = ma,
und nach (7) gilt dann §, (x) = mx fir alle x € G', da die Elemente aus
Z/eZ und G’ in G linear unabhidngig sind. Hieraus folgt bereits, dal} die
Dilatation 6, = 4, () ¢ die Gestalt x — mx fiir eine geeignete zu f teiler-
fremde Zahl m € Z hat, und auch, daBl die Dilatation 6 durch ¢, vollstindig
bestimmt wird, d.h. 4, (G) <> 4, (Z/eZ). Behauptung i) ist jetzt klar, denn
fir jedes m € Z mit (m, f) = 1 ist die Multiplikation mit n, wenn (1, ¢) = 1
und 7 = m (mod f), eine Dilatation von G, deren Beschrinkung auf G’
die Multiplikation mit m ist.

Wir miissen noch das Bild von 4, (G) in A, (Z/eZ) bestimmen, d.h.
untersuchen, fiir welche Dilatationen 6, € 4, (Z/eZ) die Abbildung 5, X §,,
wo 0, Multiplikation mit einer zu f teilerfremden Zahl m ist, eine Dilatation
ist. Nach (5) ist dafiir notwendig und hinreichend, daB es fiir alle x, y € Z/eZ,
x', y' e G', eine Zahl n e Z mit

(01 () =0, (), 0, (x) =0, (¥)) = n(x—y,x =y,
d.h. mit : ‘

01() =d: () =nx-y), mE'—y)=nx -y
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gibt. Da die letzte Gleichung genau dann fiir alle x’, ' € G’ gilt, wenn
n= m (mod f), ist diese Bedingung mit 6, € 4, (e, /) dquivalent.

Bemerkungen. 1. Satz 5 enthilt eine implizite Beschreibung von
4, (G) fir alle abelschen Gruppen G. Denn wenn G keine Torsionsgruppe
ist, ist 4, (G) nach Satz 3 zu Z/2Z isomorph. Ist G aber eine Torsionsgruppe,
dann 148t sich G als Vereinigung von Gruppen endlichen Exponents dar-

stellen, G = U G [N] mit G[N] = {ge G| Ng = 0}, und nach Satz 2 a)
N=1

gilt
) 45(G) = lim 4, (G[N]).
N
2. NachSatzdistAd, (e, /) = II 4, (p}i, pi?), fallse = II pi, f = I p;'

mit p; prim, r; = s; = 0 ist. Somit geniigt es, die Gruppen 4, (p", p°) zu
berechnen.

3. Obwohl die Sequenz (8) i.a. nicht spaltet, ist es fiir die Berechnung
von A4, (e, f) hinreichend, wenn wir die Gruppe ZO (e, f) kennen. Denn

A, (e, ) ist das Produkt des Normalteilers jo (e, ) und der zu (Z/eZ)*
isomorphen Untergruppe der Multiplikationen (da letztere sich surjektiv
auf (Z/ fZ)* abbildet), und wir kennen den Durchschnitt der beiden

Untergruppen sowie die Operation der Multiplikationen auf 4, (e, /).

4. SchlieBlich hat man (analog zu Satz 5) fiir die gesamte Dilatations-
gruppe von G = (Z/eZ) @ G’ die exakte Sequenz
(10) 1~ d(e.f) ~4(G) > G k (ZIfD)* - 1,
wobei
(11)  A(e,f) = {64 (ZleZ) |V x,yeZleZIn = 1 (modf)

mit6(x) —6(y) =n(x—y)}.
Denn wenn 6 = J; X 0, eine Dilatation auf (Z/eZ) ® G’ ist mit §, (1)
— 0, (0) = n, so gilt fiir 6, die Beziehung
6,(x) =6, (3) =n(x—y) (Vx,ye@)

(Anwendung von (7) auf die Elemente (1, x) und (0, y)). Mit anderen
Worten: §, liegt in der zu G' x (Z/ f Z)* isomorphen Gruppe der ,,affinen*
Dilatationen x+mx + a (me(Z/fZ)* acG’) und §; liegt, falls &,
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(oder auch nur das Bild von 6, in (Z/fZ)*) trivial ist, in 4 (e, f). Die
Bemerkungen 1.—3. gelten ebenso fiir nicht-homogene Dilatationen, sodal3
wir die Bestimmung von 4 (G) fiir beliebige abelsche Gruppen auf die

Bestimmung von 4 (p", p®) zuriickgefiihrt haben.

Wir miissen also nur noch die Gruppen 4, (p", p°) und 4 (p", p°) be-
rechnen, was im nichsten Kapitel geschieht.

III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN

Seien p eine Primzahl und r» = s = 0 ganze Zahlen. In diesem Kapitel

wollen wir die Gruppen j o (P, p°) und A~( p", p°) berechnen. Da diese
Gruppen Untergruppen von 4, (Z/p"Z) bzw. von 4 (Z/p'Z) sind, behandeln
wir zunichst den Spezialfall s = O.

SATZ 6. a) Die Dilatationsgruppe der zyklischen Gruppe G = Z/p'Z

ist zum r-fachen Kranzprodukt der symmetrischen Gruppe S, isomorph,
(12) A(ZIp'Z) =G,2..06,,
r mal

wo das Kranzprodukt von einer Gruppe H mit S, durch die Operation von
©, als Permutationsgruppe von p Elementen gegeben wird, d.h. H 2 S,
= (H x ... x H) x &,. Insbesondere gilt

p

p mal
(13) |4(Z/p"Z)| = p (L+ptp2e.+pr=1 _ p 1T =DI=1)
b) Die homogene Dilatationsgruppe von Z/p"Z wird gegeben durch

(14) A0 (ZIPZ) = S, ; x (6,28, ) x ...
X (G, 16,18,.))

r—i mal
und hat die Ordnung p ! 7" ~D/=1))pr

Beweis. Wir werden 4 (Z/p"Z) induktiv bestimmen, indem wir die
Gruppe Z/p"Z in Nebenklassen nach der Untergruppe PZ/p"Z zerlegen.
Nach Satz 4 ¢) mit G = Z/p'Z, N = pZ/p'Z und Q = Z/pZ gibt es einen
injektiven Homomorphismus
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