Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: MÉTRIQUES KÄHLÉRIENNES ET SURFACES MINIMALES

Autor: Rummler, Hansklaus

Kapitel: §1. Rappels et notation.

DOI: https://doi.org/10.5169/seals-49706

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MÉTRIQUES KÄHLÉRIENNES ET SURFACES MINIMALES

par Hansklaus RUMMLER 1)

§ 0. Introduction

Il est bien connu que dans une variété kählérienne les sous-variétés complexes locales sont des sous-variétés minimales par rapport à la métrique riemanienne induite par la métrique kählérienne donnée. Une première démonstration a été donnée par Wirtinger dans [4] pour \mathbb{C}^n avec la métrique canonique $\sum dz_i \otimes d\overline{z}_i$. Dans la suite, plusieurs auteurs ont généralisé le résultat pour les variétés kählériennes quelconques (voir par ex. [2] et [3]).

Le but de ce travail est de fournir une preuve que cette condition nécessaire est aussi suffisante pour qu'une métrique hermitienne donnée soit kählérienne. En effet, on démontre un résultat encore plus général: Si toutes les sous-variétés complexes locales de dimension 1 sont des surfaces minimales par rapport à la métrique riemanienne induite par une métrique hermitienne donnée, celle-ci est déjà kählérienne. Il suffit même de montrer l'existence d'une famille assez large de sous-variétés complexes locales de dimension 1 qui sont des surfaces minimales.

La démonstration du résultat susmentionné consiste en deux parties (voir les lemmes 1 et 2 du paragraphe 2): la première prouve que l'hypothèse implique que toutes les sous-variétés complexes locales de dimension 2 sont kählériennes avec la métrique hermitienne induite; la seconde en tire la conclusion que la métrique donnée est déjà kählérienne.

Vu sa simplicité et pour être complet nous donnons également la preuve de la nécessité de la condition.

§ 1. RAPPELS ET NOTATION.

Soit M une variété complèxe. Pour chaque $x \in M$ l'espace tangent T_xM est un espace vectoriel sur \mathbb{C} , la structure complexe étant fournie par l'application $(dz_1, ..., dz_n) : T_xM \to \mathbb{C}^n$ si $z_1, ..., z_n$ sont des coor-

¹⁾ Supporté par une bourse du Fonds national suisse de la Recherche.

données holomorphes en x. La multiplication par le scalaire $i \in \mathbb{C}$ est notée $J: T_xM \to T_xM$. Pour $z_j = x_j + iy_j$, j = 1, ..., n (décomposition en parties réelle et imaginaire) on a donc

$$J\left(\frac{\partial}{\partial x_j}\right) = \frac{\partial}{\partial y_j}, J\left(\frac{\partial}{\partial y_j}\right) = -\frac{\partial}{\partial x_j}, j = 1, ..., n$$
 (1)

Soit (,) une métrique hermitienne. En la décomposant en ses parties réelle et imaginaire, (,) = <, > + $i\omega$, on obtient la métrique riemannienne induite <, > := Re(,) ainsi que la forme différentielle de degré 2, ω := Im (,), appelée forme fondamentale.

J, < , > et ω sont reliés par les formules suivantes:

$$\langle J\xi, \eta \rangle = -\langle \xi, J\eta \rangle, \langle J\xi, J\eta \rangle = \langle \xi, \eta \rangle$$
 (2)

$$\omega\left(\xi,\eta\right) = \langle \xi, J\eta \rangle \tag{3}$$

pour $\xi, \eta \in T_x M, x \in M$.

La métrique hermitienne (,) est dite kählérienne, si sa forme fondamentale est fermée:

$$d\omega = 0. (4)$$

Cette définition est équivalente à une caractérisation plus géométrique: Si D est la connexion de Levi-Civita associée à la métrique riemannienne <, >, alors D est C-linéaire dans la seconde variable, c'est-à-dire on a

$$D_{\xi}(J\eta) = J(D_{\xi}\eta) \tag{5}$$

pour tout champ de vecteur η sur M et pour tout vecteur tangent ξ . (Quant à l'équivalence de (4) et (5), voir p. ex. [2], vol. II, p. 142).

Soit maintenant M une variété différentiable (de classe \mathscr{C}^{∞}) munie d'une métrique riemannienne <, >, et soit D sa connexion de Levi-Civita. Pour une sous-variété différentiable locale N avec un champ de vecteur normal local v (c'est-à-dire $v:N\to TM$, $v(x)\in T_xN^{\perp}$, ||v(x)||=1), on définit l'application de Weingarten associée à ce champ normal v: c'est l'application $W_x^v = T_xN \to T_xN$, $W_x^v(\xi) = -pr_x(D_{\xi}v)$, où $pr_x:T_xM\to T_xN$ est la projection orthogonale. W_x^v est définie pour tout x dans le domaine de v, et c'est une application symétrique par rapport à la métrique riemanienne induite sur N. Sa trace décrit la variation de l'élément de volume pour les variations de N dans la direction v, et N est appelée sous-variété minimale de N si cette trace trW_x^v est nulle pour tous les champs de vecteur normaux v sur N. (Cf. [2], vol. II, p. 34. Dans le cas classique d'une hyper-surface N dans l'espace euclidien $M = \mathbb{R}^n$,

tr W^{ν} est la courbure moyenne de N, orienté par le champ normal ν .) C'est une remarque triviale mais très utile que la trace de l'application de Weingarten peut être calculée par la formule suivante :

$$tr W_x^{\nu} = - \sum_{j=1}^p \langle D_{\xi_j} \nu, \xi_j \rangle$$
 (6)

si $(\xi_1, ..., \xi_p)$ est une base orthonormale de T_xN .

§ 2. MÉTRIQUE HERMITIENNE ET SOUS-VARIÉTÉS MINIMALES.

Soit de nouveau M une variété complexe dotée d'une métrique hermitienne (,). Cette fois, on considère à la fois la structure de variété complexe hermitienne et celle de variété différentiable riemannienne induite, et on se propose de démontrer le théorème suivant:

Théorème. Pour la métrique hermitienne donnée les conditions suivantes sont équivalentes :

- (a) C'est une métrique kählérienne.
- (b) Par rapport à la métrique riemannienne induite, toute sous-variété complexe locale de M est une sous-variété minimale.
- (c) Par rapport à la métrique riemannienne induite, toute sous-variété complexe locale de dimension 1 dans M est une surface minimale.

Remarque. Dans (b) et (c) c'est en général important de considérer les sous-variétés complexes locales parce que (a) est une condition locale et que la famille des sous-variétés complexes globales peut être aussi restreinte qu'elle vérifie (b) sans que la métrique soit kählérienne. Néanmoins, la preuve du théorème montre que dans certains cas il suffit de vérifier (b) ou (c) pour les sous-variétés complexes globales.

Démonstration.

 $(a) \Rightarrow (b)$. Soit N une sous-variété analytique complexe locale dans M avec un champ de vecteur normal v et soient ξ , η deux champs tangents à N. On a alors — avec les notations du paragraphe précédent —