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degrees. The second method (Theorem 3.14) is valid for an arbitrary field

of characteristic 0, but is less effective than the first in the real case.

We first prove that the degrees of the basic invariants are independent
of any particular basis.

Theorem 3.1. Let G afinite reflection group acting on the n-dimensional

vector space V. Let f, In be homogeneous polynomials of respective

degrees dx < < dn forming a basis for the invariants of G. du dn

are independent of the chosen basis 71? In.

Proof Let Ju Jn be another set of homogeneous invariants forming a

basis for the invariants of G. Let d[ < < d'n be the respective degrees

of Ju Jn. We must show that d- di9 1 < i < n. If not, then let i0
be the smallest i such that d'iQ ^ diQ, say d'iQ < diQ. Each Jt is a polynomial
in those 7-s whose degree < deg Jt. It follows that for 1 < z < z0,

Ji Pi Vi,-,Pi (Ji, -,J;0-i)being a polynomial in^,
Hence Ju JiQ are algebraically dependent over k ([22], Vol. 1, p. 181),

contradicting that Ju ...,/„ are algebraically independent over k
(Theorem 1.2). Thus d[ «= di9 1 < I < n.

Theorem 3.1. shows that the numbers dl9 dn are determined by G.
We shall give an effective method for the computation of the d\s in case
the underlying field k is real. We first digress to discuss the classification
of the finite real reflection groups.

1. The Classification of the Finite Real Reflection Groups

These groups have been classified by Coxeter [6]. We give here a brief
description of the theory, as we require it for the computation of the d[s.

We first observe that we may assume G to be orthogonal.

Theorem 3.2. Let G be a finite group acting on the n-dimensional
Euclidean space Rn. There exists a non-singular transformation t on Rn
such that the group t 1 G % consists of orthogonal transformations.

Proof Let P (x) £ (ax, ox) where x (xl5 xn) and (x, y) is
asG

the inner product of x and y. For x # 0, each (ax, ax) > 0 so that
P(x) > 0. Furthermore for aleG,P(a1x) £ (aa^aa^)

<tbG

Yj (ax> <*x) P (*)• Thus P (x) is a positive definite quadratic form
(teG
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invariant under G. Choose x t y so that P (ty) (y, y). We have

(t~ Vty, r~ 1(iTy) ~ P (erry) P (ty) (y, y), a e G, so that the
transformations t~ 1

er t are orthogonal.
Thus all transformations of G become orthogonal after a suitable

linear change of variables. We assume from now on that G is orthogonal.
If G is a finite reflection group, this condition is equivalent to demanding
that all reflections of G are orthogonal. I.e. for any reflection cr, a fixes all
vectors in the r.h. n and o (V) — v9 iff v is perpendicular to n. The two
unit vectors perpendicular to % are called roots of G. The set of all roots is

called the root system of G.

Definition 3.1. Let F be a region of Rn, G a finite group acting on Rn.

F is a fundamental region for G iff:

i) a1 F n a2 F $ whenever a1 ^ cr2,

ii) Rn u <7 F, F being the closure of F.
creG

We remark that it suffices to know i) for a 1 e9 the identity of G.

For a1 F n cr2 F F iff erf 1 (oqFno^F) F n erf
1

cr2 F F. If F is a

fundamental region, then so is o F, o e G. The group G permutes these

fundamental regions and acts transitively on them.

Theorem 3.3. Let G be a finite reflection group acting on R\ Assume

that the roots of G span Rn (G is then called a Coxeter group). The

complement of the union of the r.h. 's of G consist of | G | fundamental regions
called the chambers of G. G permutes these chambers and acts transitively
on them. Each chamber F is bounded by n r.h.'s called the walls of F. Let

ru rn be the n roots perpendicular to the n walls Wl9 Wn and

pointing into F, and let Rt be the reflection in Wt. The r-s are linearly
independent and rt • /y — cos nlpij9 pu 1 and ptj being an integer

>2 if i ^ j- The Rt s generate G.

We have F {x | x • rt > 0, 1 <z<«}. F may also be described as

follows. Choose {r'u r'n} to be the dual basis to {ru rn}; i.e.
n

(rh rfl Sij. For any x9 x — ^ (x'rù Thus
i 1

n

F {x\x Yj ^ir'u > 0 f°r 1 < i < n)
i _ 1

F is thus a wedge with n walls, the vectors r[ lying along its edges. The

angle between the walls Wi9 Wj (/V j) is readily seen to be n/p^. We refer
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to {ru rn) as a fundamental system of roots and to jR1? Rn as a

fundamental system of reflections.
As a simple illustration of the above concepts, we choose G to be the

group of symmetries of a regular n-gon pn. G is then called the dihedral

group of order 2n and we denote it by H2. Assume that the center of the

polygon is at the origin. We choose in this case two rays lt, l2 emanating
from the origin making an angle n/n, one of the rays passing through a

vertex of pn, the other through a mid-point of a side of pn (see the diagram
where n 4). F is the wedge with sides lu l2. The reflections in lu l2

generate H2.
Diagram 3.1

For any Coxeter group G acting on Rn, we introduce the associated
Coxeter graph as follows. Let ^ consist of n points, called the nodes
and label these as 1, n. We set up the 1 — 1 correspondence z rh
ru r#I being the fundamental root system of Theorem 3.3. The z-th and
y-th node (z Ay) are joined by a branch iff (zy, rj) A 0. If this be the case
then ptj > 3; we mark the branch joining z to j by ptj whenever ptj > 3,
and omit a mark if ptj 3. Eg. the graph associated with H2 is o o

n
for n 3 and o o for n>4.

The motivation for the rather artificial looking definition of % stems
from the following facts.

Theorem 3.4. Let G be a Coxeter group acting on R". G is irreducible
iff its corresponding graph is connected.

Proof. If the graph of Ghas more than one component, then the root
system 0t 01

x u where 0l2 are disjoint and non-empty, the roots
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in 01 ^ being perpendicular to those in 0t2. Let V be the span of the roots
in 0k ^ If o is a reflection corresponding to a root in 0k u then a \v is a

reflection of V. If a is a reflection corresponding to a root in ^2, then

a \v identity. Since the reflections generate G, V is a proper invariant
subspace.

Conversely, let F be a proper invariant subspace of G. Then so is the

orthogonal complement V1. The proof of Theorem 2.7 shows that every
root is either in Vor V1. Since the roots span Rn, there are roots both in V
and V1. Since the roots in M n V are perpendicular to those of M n V±,

the graph of G consists of at least two components.
Coxeter has found all graphs corresponding to the irreducible Coxeter

groups. We have the following classification.

Theorem 3.5. Let $ be a connected Coxeter graph. The following list
exhausts the possibilities for <3.

Diagram 3.2

A„ (n>\)
Bn (n>2)

Dn (n>4)

o o o o——o
4

O O O o o

0\
>o- -o o-

o7

Hn2(n>5)

-o o

o o o o
4

o o o o

o o o o o

i

o

o o o o o o

o

-o- -o o o

I

o
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In each case the subscript denotes the number of nodes. The above list

yields all irreducible Coxeter groups up to conjugacy. I.e. two irreducible

groups which are conjugate subgroups of the orthogonal group have the

same graph and conversely.
We give a brief description of the groups listed above.

An. Let Sn+1 be the symmetric group of linear transformations x- xa(i),
1 < z < n + 1, a (z) being any permutation of 1+ 1. Let V

{x\x1 + + xn+1 0} and A„ Sn+1 \v. An is the group of
symmetries of the regular zz-simplex whose vertices are the permutations of

(-1, -1,«).
Bn is the group of symmetries of the n cube with vertices (± 1,..., +1). It
consists of the 2n n\ linear transformations x\ ± xa(i), 1 <z < n,

the + signs being chosen independently and a (z) an arbitrary permutation
of 1, n.

Dn consists of the 2"_1 n\ linear transformations x[ + xa(i), 1 < z <Z7,

where o (z) is any permutation of 1, n and the number of - signs is

even. It is readily checked that Dn is a subgroup of index 2 in Bn.

Hi is the dihedral group of 2 n symmetries of the regular n-gon.
/3 is the icosahedral group, i.e. the group of symmetries of the icosahedron.

/4, F4 are the groups of symmetries of certain 4-dimensional regular poly-
topes described in ([5], p. 156)

E6, En, E8 are the groups of symmetries of certain polytopes in R6, R7, R8

known as Gosset's figures and described in ([5], p. 202)

An inspection of diagram 3.2 reveals that the graphs are of two types,
those consisting of one chain and those consisting of three chains joined
at a node. We refer to these graphs and their associated groups as being
of types I and II. It can be shown that the groups of type I are precisely
those which are the groups of symmetries of the regular polytopes ([5],
p. 199).

The following theorem gives a complete description of all finite
reflection groups acting on Rn.

Theorem 3.6. Let G be a finite reflection group acting on Rn. Rn is a
direct sum ofmutually orthogonal subspaces V0, Vu Vk with the following
properties.

1) Let Gt G/v. the restrictions of the elements of G to Vv Then G
is isomorphic to G0 x G1 x x Gk.

2) G0 consists only of the identity transformation on V0.
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3) Each Gh 1 < i < k9 is one of the groups described in Theorem 3.5.

G is a Coxeter group iff V0 0.

The proof of Theorem 3.6 is identical with that of Theorem 2.7. We

simply observe that we may now choose the V-s to be mutually orthogonal.

2. The Computation of the Degrees

for Real Finite Reflection Groups

Let G be a finite irreducible orthogonal reflection group acting on the

«-dimensional Euclidean space Rn. Let F be a fundamental region as

described in Theorem 3.3 and Rl9 Rn the n reflections in the walls of F.

We shall relate the degrees du dn of the basic homogeneous invariants
to the eigenvalues of R1 Rn. We first prove

Theorem 3.7. Let o (/) be any permutation of 1, n. Then R1 Rn

is conjugate to Ra{1) Ra{n)

Proof. Observe that R1 (R1...Rn) Rt R2 Rn Rx so that all cyclic
permutations yield conjugate transformations. We may also permute any
two adjacent R- s for which the corresponding walls are orthogonal, as

the Rts then commute. Theorem 3.7 will then follow from the following

Lemma 3.1. Let pu ...,pn be nodes of a tree T. Any circular arrangement

of 1, n can be obtained from a sequence of interchanges of pairs
4j which are adjacent on the circle and for which ph pj are not linked in T.

Proof ofLemma 3.1. We proceed by induction, the result being obvious
for 7? 1 or 2. We may assume that pn is an end node of the tree, i.e. it
links to precisely one other node. We first rearrange 1, n — 1 as we
wish. To show that this can be done, we just consider the possibility

inj where pu pj are not linked. If phpn are not linked, then we

interchange first i, n and then /, /, obtaining nji If pj9pn are not
linked, then we first interchange /, n and then /, i, obtaining jin
We may therefore arrange 1, n — 1 in the desired order. Shifting n in
one direction, which is permissible as n just fails to commute with one

element, we obtain the desired arrangement of 1, ...,/?.
In view of Theorem 3.7, the eigenvalues of R1 Rn are independent

of the order in which the R- s appear. They are also independent of the

particularly chosen F. For let F' be another fundamental region as described

in Theorem 3.3. Then F' o F9 o e G. The reflections in the walls of F'
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