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through a map H* (BG; R) —» H* (L,,; G) so that we get a commutative
diagram

H*(Ly; G)
/”
H*(BG; R)
A \\ !
H*(X; R)

So it is important to compute the map H* (BG; R) » H* (L,;; G).
When G is a compact connected Lie group, then H* (BG; R) is the algebra
I (G) of invariant polynomials on the Lie algebra of G, and the map from
I(G) to C* (Ly; G) is given by a G-connexion in C* (L,,) (cf. [5]).

In the example above, namely M = S* and G = SO,, then H* (BSO,)
is a polynomial algebra in a generator of degree 2, the Euler class, which is
mapped on a non zero multiple of e.

3. THE FORMAL VECTOR FIELDS AND THE DIAGONAL COMPLEX

Given a point x on M, we can consider the Lie algebra L;; of infinite
jets at x of vector fields on M with the quotient topology. It is isomorphic
to the Lie algebra a, of formal vector fields ) v; (x) 6/0 x* in R", where the
v; (x) are formal power series in the coordinates x', ..., x".

The natural map L,, — L;; associating to a vector field its jet at x gives

a DG-algebra morphism
C*(Ly) = C* (Lay)

where C* (Lj;) is the algebra of multilinear alternate forms on L}, depending
only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the
complete determination of the cohomology H* (qa,) of the topological Lie
algebra of formal vector fields on R".

THEOREM 1. (Gelfand-Fuks [8], [9]). Let E (hy, ..., h,) be the exterior
algebra on generators h; of degree 2i—1 and let Rcy, ..., c,), be the
quotient of the polynomial algebra in generators c; of degree 2i by the
ideal of elements of degree > 2n.
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Then a model for C* (a,) is the DG-algebra
WUn B E(hI, ceeg hn) ® R [Cl’ cees Cn] 2/:,
with dh; = ¢; and dc; = 0.

It follows that H'(a,) = 0 for 1 < i < 2n and i > n* + 2n. Also the
multiplicative structure is trivial; more precisely, WU, is a model for a
wedge of spheres (for instance S° forn = 1,S° v S° v §7v §% v §°
for n = 2) (cf. Vey [9)).

WU, is also a model for the space F, obtained by taking the restriction
of the U, -universal bundle over the 2n-skeleton of its base space BU,
(cf. Gelfand-Fuks [8]). Note that this representation is compatible with
the natural actions of O, < U,,.

One can also consider the relative complex C* (a,, O,) or C* (a,, SO,)
of O, or SO,-basic elements in C* (a,), where O, is the orthogonal group
acting in the usual way on R", hence on a,.

Define WO, as the subalgebra of WU, generated by the /; with i odd
and all the ¢;. From theorem 1, it is easy to deduce the

THEOREM 1’ [12]. WO, is a model for C* (a,, O,).
A model for C* (a,, SO,) is WO, for n odd and

WSO0, = WO, ® R[e]/(¢* —c,)

for n even, where dege = n and de = O.

From the finite dimensionality of H* (a,), using a suitable spectral
sequence, Gelfand and Fuks prove in particular [7].

THEOREM 2. If H* (M) is finite dimensional, then H* (L,,) is finite
dimensional in each degree.
The Guillemin-Losik double complex.

First define C* (L, Q,,) as the algebra of continuous alternate multi-

linear forms on L,, with values in the algebra Q,, of differential forms on M.

We have two differentials, the first one defined as in 1 and the second one

by the exterior differential in Q,,. So this is a double complex and we can
consider the associated total differential.

C (Lyp, Q4) is the subcomplex of C* (Ly, 2,,) of those forms asso-

: ciating to a sequence v, ..., v, of vector fields on M a differential form

f (vl,,...,vk) whose value at x e M depends only on finite order jets of
the v;s at x.
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THEOREM 3. (Guillemin [10], Losik [17]). C& (Ly, 25) is a model
for a bundle E with fiber F,, base space M, associated to the tangent
bundle of M. .

More precisely, a model for C Z; (Lar, Qp) is the DG-algebra Q,; ® WU,
over ., where

d(l@cl)ZO d(1®h1)=1®cl—pl/2®1
where p;,, is zero if i is odd and is a form representing the Pontrjagin class
of M of degree 2i if i is even.
Note that if a foliation F on X X M transverse to the fibers { x } x M
is given, one has a characteristic homomorphism
C*(La, @y) = Lxyom
One has also a morphism
WO, — Cx (Ly, Q)

(or WU, —» C* (Ly, 2, in case M has trivial Pontrjagin classes) whose
composition with the previous one is the usual characteristic homomor-
phism for the foliation F (cf. [3], [12]).

4, MAIN THEOREM

THEOREM 1. C* (L,,) is a model for the space I' of continuous sections
of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by
several people (Bott-Segal'), Fuks-Segal, Haefliger [13], Ph. Trauber, and

others).
Suppose that G is a compact connected Lie group acting on M. Then it

also acts on the bundle £ and on its space of sections. Let us denote by I';
the total space of the bundle with fiber I' associated to the universal G-
bundle with base space BG.

THEOREM 1'. C* (Ly; G) is a model for the space TI';.

The way I proved theorem 1 was to construct first a tentative algebraic

model A for I following ideas of R. Thom [20] and D. Sullivan [18], and

1) Added on proof: Topology 16 (1977), pp. 285-298.
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