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through a map H* (BG; R) -> if* (LM; G) so that we get a commutative
diagram

H*(LM; G)

H * (BG; R)

^ H*(X;R)

So it is important to compute the map H* (BG; R) -> H* (LM; G).
When G is a compact connected Lie group, then H* (BG; R) is the algebra

I (G) of invariant polynomials on the Lie algebra of G, and the map from
1(G) to C* (Lm; G) is given by a G-connexion in C* (LM) (cf. [5]).

In the example above, namely M S1 and G S02, then H* (.BS02)
is a polynomial algebra in a generator of degree 2, the Euler class, which is

mapped on a non zero multiple of e.

3. The formal vector fields and the diagonal complex

Given a point x on M, we can consider the Lie algebra Lm of infinite
jets at x of vector fields on M with the quotient topology. It is isomorphic
to the Lie algebra an of formal vector fields y£,vi(x) did xl in Rn, where the

vt (x) are formal power series in the coordinates x1, xn.

The natural map LM -» Lm associating to a vector field its jet at x gives

a DG-algebra morphism

C* (L^) -+ C*(Lm)

where C* (L^) is the algebra of multilinear alternate forms onL^ depending
only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the

complete determination of the cohomology H* (an) of the topological Lie
algebra of formal vector fields on Rn.

Theorem 1. (Gelfand-Fuks [8], [9]). Let E(hu hn) be the exterior
algebra on generators ht of degree 2i.— \ and let R [c1, cn]2n be the

quotient of the polynomial algebra in generators ct of degree 2i by the

ideal of elements of degree > 2n.
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Then a model for C* (an) is the DG-algebra

WUn E(hu. 2a„

with dht Cf and dct 0.

It follows that FT (a„) 0 for 1 < i < 2n and i > n2 + 2n. Also the

multiplicative structure is trivial; more precisely, WUn is a model for a

wedge of spheres (for instance S3 for n 1, S5 v S5 v S7 v S8v S8

for n 2) (cf. Vey [9]).

WUn is also a model for the space Fn obtained by taking the restriction

of the {/„-universal bundle over the 2ft-skeleton of its base space BUn

(cf. Gelfand-Fuks [8]). Note that this representation is compatible with
the natural actions of On cz Un.

One can also consider the relative complex C* (a„, On) or C* (a„, SOn)

of On or SO„-basic elements in C* (a„), where On is the orthogonal group
acting in the usual way on Rn, hence on an.

Define WOn as the subalgebra of WUn generated by the ht with i odd
and all the ct. From theorem 1, it is easy to deduce the

Theorem F [12]. WOn is a model for C* (a„, On).

A model for C * (a„, SOn) is WOn for n odd and

WSO„ WOn® R[e

for n even, where deg e n and de 0.

From the finite dimensionality of H* (a„), using a suitable spectral

sequence, Gelfand and Fuks prove in particular [7].

Theorem 2. If H* (M) is finite dimensional, then H* (LM) is finite
dimensional in each degree.

The Guillemin-Losik double complex.

First define C* (LM, QM) as the algebra of continuous alternate multilinear

forms on LM with values in the algebra QM of differential forms on M.
I We have two differentials, the first one defined as in 1 and the second one
j.j by the exterior differential in QM. So this is a double complex and we can

consider the associated total differential.
^m) ^ subcomplex of G (T^j, 12of those forms asso-

\ dating to a sequence vu vk of vector fields on M a differential form
f f(vi, ...,%) whose value at xeM depends only on finite order jets of
I the vts at x.

I



— 148 —

Theorem 3. (Guillemin [10], Losik [17]). CA (FM, QM) is a model

for a bundle E with fiber Fn, base space M, associated to the tangent
bundle of M.

More precisely, a modelfor CA (LM, QM) is the DG-algebra QM ® WUn
over Qm, where

d (1 ®Ci) =0 d (1 ®ht) 1 ® ct — pi/2 ® 1

where pij2 is zero if i is odd and is a form representing the Pontrjagin class

of M of degree 2i if i is even.

Note that if a foliation F on X x M transverse to the fibers {v} x M
is given, one has a characteristic homomorphism

C* (Lm, Qm) QxxM

One has also a morphism

WOn^C*A(LM, Qm)

(or WUn -> C* (Lm, Qm) in case M has trivial Pontrjagin classes) whose

composition with the previous one is the usual characteristic homomorphism

for the foliation F (cf. [3], [12]).

4. Main theorem

Theorem 1. C* (LM) is a modelfor the space r of continuous sections

of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by
several people (Bott-Segal *), Fuks-Segal, Haefliger [13], Ph. Trauber, and

others).
Suppose that G is a compact connected Lie group acting on M. Then it

also acts on the bundle E and on its space of sections. Let us denote by rG
the total space of the bundle with fiber F associated to the universal G-

bundle with base space BG.

Theorem Y. C * (EM ; G) is a model for the space rG.

The way I proved theorem 1 was to construct first a tentative algebraic
model A for F following ideas of R. Thorn [20] and D. Sullivan [18], and

0 Added on proof: Topology 16 (1977), pp. 285-298.
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