Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	24 (1978)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ON THE GELFAND-FUKS COHOMOLOGY
Autor:	Haefliger, André
Kapitel:	3. The formal vector fields and the diagonal complex
DOI:	https://doi.org/10.5169/seals-49696

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

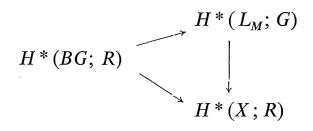
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

— 146 —

through a map $H^*(BG; \mathbb{R}) \to H^*(L_M; G)$ so that we get a commutative diagram



So it is important to compute the map $H^*(BG; R) \to H^*(L_M; G)$. When G is a compact connected Lie group, then $H^*(BG; R)$ is the algebra I(G) of invariant polynomials on the Lie algebra of G, and the map from I(G) to $C^*(L_M; G)$ is given by a G-connexion in $C^*(L_M)$ (cf. [5]).

In the example above, namely $M = S^1$ and $G = SO_2$, then $H^*(BSO_2)$ is a polynomial algebra in a generator of degree 2, the Euler class, which is mapped on a non zero multiple of e.

3. The formal vector fields and the diagonal complex

Given a point x on M, we can consider the Lie algebra L_M^x of infinite jets at x of vector fields on M with the quotient topology. It is isomorphic to the Lie algebra \mathfrak{a}_n of formal vector fields $\sum v_i(x) \partial/\partial x^i$ in \mathbb{R}^n , where the $v_i(x)$ are formal power series in the coordinates $x^1, ..., x^n$.

The natural map $L_M \to L_M^x$ associating to a vector field its jet at x gives a DG-algebra morphism

$$C^*(L_M^x) \to C^*(L_M)$$

where $C^*(L_M^x)$ is the algebra of multilinear alternate forms on L_M^x depending only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the complete determination of the cohomology $H^*(\mathfrak{a}_n)$ of the topological Lie algebra of formal vector fields on \mathbb{R}^n .

THEOREM 1. (Gelfand-Fuks [8], [9]). Let $E(h_1, ..., h_n)$ be the exterior algebra on generators h_i of degree 2i-1 and let $R[c_1, ..., c_n]_{2n}^{\wedge}$ be the quotient of the polynomial algebra in generators c_i of degree 2i by the ideal of elements of degree > 2n.

Then a model for $C^*(\mathfrak{a}_n)$ is the DG-algebra

$$W U_n = E(h_1, ..., h_n) \otimes R[c_1, ..., c_n] \hat{c}_n$$

with $dh_i = c_i$ and $dc_i = 0$.

It follows that $H^i(\mathfrak{a}_n) = 0$ for $1 \leq i \leq 2n$ and $i > n^2 + 2n$. Also the multiplicative structure is trivial; more precisely, WU_n is a model for a wedge of spheres (for instance S^3 for n = 1, $S^5 \vee S^5 \vee S^7 \vee S^8 \vee S^8$ for n = 2) (cf. Vey [9]).

 WU_n is also a model for the space F_n obtained by taking the restriction of the U_n -universal bundle over the 2*n*-skeleton of its base space BU_n (cf. Gelfand-Fuks [8]). Note that this representation is compatible with the natural actions of $O_n \subset U_n$.

One can also consider the relative complex $C^*(\mathfrak{a}_n, O_n)$ or $C^*(\mathfrak{a}_n, SO_n)$ of O_n or SO_n -basic elements in $C^*(\mathfrak{a}_n)$, where O_n is the orthogonal group acting in the usual way on \mathbb{R}^n , hence on \mathfrak{a}_n .

Define WO_n as the subalgebra of WU_n generated by the h_i with *i* odd and all the c_i . From theorem 1, it is easy to deduce the

THEOREM 1' [12]. WO_n is a model for $C^*(\mathfrak{a}_n, O_n)$. A model for $C^*(\mathfrak{a}_n, SO_n)$ is WO_n for n odd and

$$WSO_n = WO_n \otimes R[e] / (e^2 - c_n)$$

for n even, where deg e = n and de = 0.

From the finite dimensionality of $H^*(\mathfrak{a}_n)$, using a suitable spectral sequence, Gelfand and Fuks prove in particular [7].

THEOREM 2. If $H^*(M)$ is finite dimensional, then $H^*(L_M)$ is finite dimensional in each degree. The Guillemin-Losik double complex.

First define $C^*(L_M, \Omega_M)$ as the algebra of continuous alternate multilinear forms on L_M with values in the algebra Ω_M of differential forms on M. We have two differentials, the first one defined as in 1 and the second one by the exterior differential in Ω_M . So this is a double complex and we can consider the associated total differential.

 $C^*_{\Delta}(L_M, \Omega_M)$ is the subcomplex of $C^*(L_M, \Omega_M)$ of those forms associating to a sequence $v_1, ..., v_k$ of vector fields on M a differential form $f(v_1, ..., v_k)$ whose value at $x \in M$ depends only on finite order jets of the v_i 's at x.

THEOREM 3. (Guillemin [10], Losik [17]). $C^*_{\Delta}(L_M, \Omega_M)$ is a model for a bundle E with fiber F_n , base space M, associated to the tangent bundle of M.

More precisely, a model for $C^*_{\Delta}(L_M, \Omega_M)$ is the DG-algebra $\Omega_M \otimes WU_n$ over Ω_M , where

$$d(1 \otimes c_i) = 0 \quad d(1 \otimes h_i) = 1 \otimes c_i - p_{i/2} \otimes 1$$

where $p_{i/2}$ is zero if *i* is odd and is a form representing the Pontrjagin class of *M* of degree 2*i* if *i* is even.

Note that if a foliation F on $X \times M$ transverse to the fibers $\{x\} \times M$ is given, one has a characteristic homomorphism

$$C^*(L_M, \Omega_M) \to \Omega_{X \times M}$$

One has also a morphism

$$WO_n \to C^*_{\wedge}(L_M, \Omega_M)$$

(or $WU_n \to C^*(L_M, \Omega_M)$ in case *M* has trivial Pontrjagin classes) whose composition with the previous one is the usual characteristic homomorphism for the foliation *F* (cf. [3], [12]).

4. MAIN THEOREM

THEOREM 1. $C^*(L_M)$ is a model for the space Γ of continuous sections of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by several people (Bott-Segal¹), Fuks-Segal, Haefliger [13], Ph. Trauber, and others).

Suppose that G is a compact connected Lie group acting on M. Then it also acts on the bundle E and on its space of sections. Let us denote by Γ_G the total space of the bundle with fiber Γ associated to the universal G-bundle with base space BG.

THEOREM 1'. $C^*(L_M; G)$ is a model for the space Γ_G .

The way I proved theorem 1 was to construct first a tentative algebraic model A for Γ following ideas of R. Thom [20] and D. Sullivan [18], and

¹) Added on proof: *Topology 16* (1977), pp. 285-298.