|
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
|
|
|
Front matter
|
|
|
Front matter
|
|
|
Table of Contents
|
1
|
|
Front matter
|
2
|
|
Article
LA CONJECTURE abc
|
3
|
|
Chapter
1. Introduction
|
3
|
|
Chapter
2. La conjecture abc
|
4
|
|
Chapter
3. Applications de la conjecture abc
|
6
|
|
Chapter
4. A LA RECHERCHE DE FORMES EFFECTIVES
|
15
|
|
Chapter
5. GÉNÉRALISATIONS
|
20
|
|
Bibliography
|
22
|
|
Article
DOUBLE VALUED REFLECTION IN THE COMPLEX PLANE
|
25
|
|
Chapter
Introduction
|
25
|
|
Chapter
1. Double valued reflection
|
26
|
|
Chapter
2. Conic sections
|
29
|
|
Chapter
3. The intrinsic theory: genus zero
|
33
|
|
Chapter
4. Riemann maps
|
36
|
|
Chapter
5. INVOLUTIONS ON A TORUS
|
40
|
|
Chapter
6. Embedding of tori
|
43
|
|
Chapter
7. A RECTANGULAR LATTICE
|
46
|
|
Bibliography
|
48
|
|
Article
KLYACHKO'S METHODS AND THE SOLUTION OF EQUATIONS OVER TORSION-FREE GROUPS
|
49
|
|
Abstract
|
49
|
|
Chapter
1. Introduction
|
50
|
|
Chapter
2. The crash theorems
|
52
|
|
Chapter
3. TWO TRANSVERSALITY LEMMAS
|
57
|
|
Chapter
4. Application to the Kervaire problem
|
61
|
|
Chapter
5. The general case
|
67
|
|
Chapter
6. Further Applications
|
71
|
|
Bibliography
|
73
|
|
Article
CENTRALISERS IN THE BRAID GROUP AND SINGULAR BRAID MONOID
|
75
|
|
Abstract
|
75
|
|
Chapter
1. Introduction and Basic Definitions
|
75
|
|
Chapter
2. Commutation and stabilisers
|
80
|
|
Chapter
3. Proof of Theorem 2.2
|
82
|
|
Chapter
4. Centralisers of braid subgroups
|
84
|
|
Chapter
5. The singular braid monoid and the map η
|
87
|
|
Chapter
6. Results regarding injectivity of η
|
89
|
|
Chapter
7. Centralisers in $SB_n$
|
94
|
|
Bibliography
|
95
|
|
Article
MOYENNES SUR CERTAINS ENSEMBLES DE DIVISEURS D'UN ENTIER
|
97
|
|
Abstract
|
97
|
|
Chapter
1. Introduction
|
97
|
|
Chapter
2. Propriétés arithmétiques de $\bar{f}$, $\hat{f}$ et $\tilde{f}$
|
100
|
|
Chapter
3. Valeurs moyennes de $\bar{f}$, $\hat{f}$ et $\tilde{f}$
|
106
|
|
Chapter
4. Mesure de l'écart entre f et les moyennes $\bar{f}$, $\hat{f}$ et $\tilde{f}$
|
113
|
|
Chapter
5. GÉNÉRALISATIONS ET EXEMPLES
|
115
|
|
Bibliography
|
122
|
|
Article
EMPILEMENTS DE CERCLES ET REPRÉSENTATIONS CONFORMES: une nouvelle preuve du théorème de Rodin-Sullivan
|
125
|
|
Chapter
I. Introduction
|
125
|
|
Chapter
II. Le Théorème de Rodin-Sullivan : ÉNONCÉ ET SCHÉMA DE LA PREUVE
|
126
|
|
Chapter
IV. Estimations à priori des rayons
|
135
|
|
Chapter
V. Changement de variable
|
139
|
|
Chapter
VI. Inégalité de Harnack
|
142
|
|
Chapter
VII. Commentaires
|
149
|
|
Chapter
1. Sur l'inégalité de Harnack
|
149
|
|
Chapter
2. Sur le théorème de Rodin-Sullivan
|
150
|
|
Bibliography
|
151
|
|
Article
UNIFORM DISTRIBUTION ON DIVISORS AND BEHREND SEQUENCES
|
153
|
|
Chapter
1. DEFINITIONS AND BASIC RESULTS
|
153
|
|
Chapter
2. Functions of moderate growth
|
164
|
|
Chapter
3. Functions of excessive growth: the case $f(d) = d^\alpha$
|
174
|
|
Chapter
4. FUNCTIONS OF EXCESSIVE GROWTH : THE CASE f(d) =θd
|
180
|
|
Chapter
§5. Additive functions
|
190
|
|
Chapter
6. Metric results
|
193
|
|
Bibliography
|
196
|
|
Rubric
BULLETIN BIBLIOGRAPHIQUE
|
1
|
|
Back matter
|
|
|
Back matter
|
|
|
Issue 3-4: L'ENSEIGNEMENT MATHÉMATIQUE
|
|
|
Front matter
|
|
|
Article
ON THE GAUSS-BONNET FORMULA FOR LOCALLY SYMMETRIC SPACES OF NONCOMPACT TYPE
|
201
|
|
Abstract
|
201
|
|
Chapter
Introduction
|
201
|
|
Chapter
1. The formula of Allendoerfer and Weil
|
203
|
|
Chapter
2. An exhaustion of locally symmetric spaces
|
204
|
|
Chapter
2.1. Reduction theory and geometry at infinity
|
204
|
|
Chapter
2.2. An exhaustion by polyhedra
|
207
|
|
Chapter
3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA
|
209
|
|
Chapter
4. A NEW PROOF OF THE GAUSS-BONNET FORMULA
|
212
|
|
Bibliography
|
213
|
|
Article
INTRODUCTORY NOTES ON RICHARD THOMPSON'S GROUPS
|
215
|
|
Chapter
§1. Introduction to F
|
216
|
|
Chapter
§2. Tree diagrams
|
218
|
|
Chapter
§3. Presentations for F
|
225
|
|
Chapter
§4. Further properties of F
|
227
|
|
Chapter
§5. Thompson's group T
|
233
|
|
Chapter
§6. Thompson's group V
|
240
|
|
Chapter
§7. Piecewise integral projective structures
|
248
|
|
Bibliography
|
254
|
|
Article
SQUARE-FREE TOWER OF HANOI SEQUENCES
|
257
|
|
Abstract
|
257
|
|
Chapter
0. Square-free strings and the Olive sequence
|
257
|
|
Chapter
1. A FINITE ALPHABET
|
260
|
|
Chapter
2. Smaller alphabets
|
262
|
|
Bibliography
|
263
|
|
Article
CHARACTERISTIC CLASSES, ELLIPTIC OPERATORS AND COMPACT GROUP ACTIONS
|
265
|
|
Chapter
0. Introduction
|
265
|
|
Chapter
1. CHARACTERISTIC CLASSES AND MULTIPLICATIVE SEQUENCES
|
266
|
|
Chapter
2. The index of an elliptic complex
|
271
|
|
Chapter
3. The Lefschetz fixed point formula
|
277
|
|
Chapter
4. The Lefschetz Theorem for foliated manifolds
|
282
|
|
Chapter
5. Group Actions and the Lefschetz Theorem
|
287
|
|
Chapter
6. The Rigidity Theorem of Witten
|
290
|
|
Bibliography
|
292
|
|
Article
BARBIER'S THEOREM FOR THE SPHERE AND THE HYPERBOLIC PLANE
|
295
|
|
Chapter
1. Introduction
|
295
|
|
Chapter
2. Curves of constant width in the euclidean plane
|
297
|
|
Chapter
3. Geodesic parallel coordinates
|
302
|
|
Chapter
4. Proof of the main results
|
307
|
|
Bibliography
|
308
|
|
Article
SYSTEMS OF CURVES ON A CLOSED ORIENTABLE SURFACE
|
311
|
|
Chapter
1. Introduction
|
311
|
|
Chapter
2. Necessary conditions
|
315
|
|
Chapter
3. SUFFICIENCY FOR A SINGLE HOMOLOGY CLASS
|
317
|
|
Chapter
4. SUFFICIENCY FOR INDEPENDENT HOMOLOGY CLASSES
|
319
|
|
Chapter
5. Disjoint simple closed curves on a planar surface
|
320
|
|
Chapter
6. SUFFICIENCY IN THEOREM 3
|
324
|
|
Chapter
7. Various instructive examples
|
332
|
|
Chapter
8. Some Final Observations
|
335
|
|
Bibliography
|
339
|
|
Article
THE ZERO-IN-THE-SPECTRUM QUESTION
|
341
|
|
Abstract
|
341
|
|
Chapter
1. Introduction
|
341
|
|
Chapter
2. DEFINITION OF $L^2$ -COHOMOLOGY
|
343
|
|
Chapter
3. General Properties of $L^2$-Cohomology
|
351
|
|
Chapter
4. Very Low Dimensions
|
358
|
|
Chapter
4.1 One Dimension
|
358
|
|
Chapter
4.2 Two Dimensions
|
361
|
|
Chapter
5. Universal Covers
|
362
|
|
Chapter
5.1 Big and Small Groups
|
363
|
|
Chapter
5.2 Two and Three Dimensions
|
365
|
|
Chapter
5.3 Four Dimensions
|
367
|
|
Chapter
5.4 More Dimensions
|
369
|
|
Chapter
6. Topologically Tame Manifolds
|
372
|
|
Bibliography
|
375
|
|
Article
IN DEFENSE OF EULER
|
377
|
|
Bibliography
|
382
|
|
Article
FACTOR EQUIVALENCE RESULTS FOR INTEGERS AND UNITS
|
383
|
|
Abstract
|
383
|
|
Chapter
1. Introduction
|
383
|
|
Chapter
2. Factorizability and factor equivalence
|
384
|
|
Chapter
3. Rings of integers
|
386
|
|
Chapter
4. S-UNITS
|
387
|
|
Chapter
5. Applications
|
391
|
|
Bibliography
|
393
|
|
Rubric
COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
|
395
|
|
Article
UNDERSTANDING THE PROCESSES OF ADVANCED MATHEMATICAL THINKING
|
395
|
|
Chapter
Introduction
|
395
|
|
Chapter
THE DEVELOPMENT OF MATHEMATICAL THINKING
|
395
|
|
Chapter
compression of knowledge in mathematics
|
398
|
|
Chapter
VISUALISING MATHEMATICAL CONCEPTS
|
400
|
|
Chapter
USING SYMBOLISM TO COMPRESS PROCESS INTO CONCEPT
|
404
|
|
Chapter
SEQUENTIAL AND PROCEDURAL COMPRESSION
|
406
|
|
Chapter
transition to formal mathematics
|
407
|
|
Chapter
Can we teach students to "think mathematically" ?
|
410
|
|
Chapter
Reflections on mathematical thinking
|
412
|
|
Bibliography
|
413
|
|
Rubric
BULLETIN BIBLIOGRAPHIQUE
|
27
|
|
Back matter
|
|
|
Index
|
|
|
Back matter
|
|
|
Back matter
|
|
|
Back matter
|
|