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Each polyhedron V(s) is homotopically equivalent to V. More precisely

we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric

space V is homeomorphic to the interior of the polyhedron V(s) in V, and

U(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. Estimates for the boundary subpolyhedra

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above

exhaustion and then take the limit for s —» oo. To that end we need estimates

for the second fundamental forms and the volumes of the (lower dimensional)

boundary polyhedra.
For each Siegel set St := qtS which is part of the fundamental set Q we

have its truncated part

Si(s) := «S,- - (J n
a£A

The top dimensional boundary faces of S,(s) in <S/ (resp. of Q(s) in Q)
are subsets of horospheres :

tiia(s) '= {r~lhia -s} n A

The "horospherical" pieces Hja(s) together with their F-translates form the

boundary of the manifold with corners X(s) in X. For any nonempty subset 0
of À we set

n KiaC) C Si{s)
aG0

The various boundary subpolyhedra of V(s) are then unions of projections of
the pieces Hiq(s) under the canonical projection 7r : X — V. More precisely,
as explained in Section 2, for any subset 0 C A, we have the equivalence
relation on the set I {1,... m}

j I if and only if TqjPQ TqiPe

(the qx are as in Proposition 2.1). This relation induces a

partition, 7(0), of the set I whose components will be denoted by E. Let
n — dim A dimF, let k be the cardinality of 0 and let E G 7(0).
Then VnE k(s) := tt(|J/gi^eW) is a (n — k)-dimensional boundary
polyhedron of V(s) ; and moreover, any boundary polyhedron arises in this way
(see [L3] §4).
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REMARK. The minimal possible dimension which occurs is n — q where

q is the Q -rank of G. It is also interesting to note (though not needed below)
that the outer angles are isomorphic to Q-Weyl chambers and their walls at

infinity.
We shall use the following well-known fact about Jacobi fields in symmetric

spaces (see [K] Theorem 2.2.9). A Jacobi field along a geodesic ray is called
stable if its length is bounded.

LEMMA 3.1. Let r : [0,oo) —t X be a unit-speed geodesic ray in the

symmetric space X (of noncompact type). Set p r(0). Then the unique
stable Jacobi field Ju(s) along r(s) with Ju(0) TpX can be written as

Ju(s)e~XjSajEj(s)

J

where (£)(L)} is an orthonormal frame of parallel fields along r, the Xj are

non-negative (uniform) constants and u ^2jajEj(0).

LEMMA 3.2. Let s > 0. The second fundamental forms of every boundary
polyhedron VE~k(s) with respect to outer angles in L(^) are uniformly bounded

by a constant independent of E,k and s.

Proof Since the claim is local we can work in the universal covering

space X. As we noted above the preimage of VE~k(s) in X under the projection

7T is the union of a finite number of horospherical sets

^,©0) P| Hia(s) C P -s}
aG0 aG0

where 0 is a subset of À with k elements. The (inner) unit normal field of
the horosphere {r~lhia —s} is given by Zia := —grad hia (see e.g. [HI]
Proposition 3.1). Using dir any element in the outer angle Ofin:(p)) of VE~k(s)

at a point ix(p) G VE~~k(s) can then be identified with a positive linear
combination (of norm 1) of the radial fields Zia(p), a G 0. It therefore

suffices to show that for any pair (if a) the second fundamental form of
Vnfk(s) relative to dirZia is uniformly bounded. We fix i and a and write Z
for Zia. For p G X let

% .)p denote the Riemannian metric of X at p.
Let u, v G TpX be such that dn(u),d7i(y) G T^p)VE~k(s). Using the above

identifications the second fundamental form of VE~k(s) C U(^) with respect
to Z can be written as

IIz(*A v) (p) (.DUZ, v)p
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According to [HI], Proposition 3.1, we have DuZ(p) J'u{0) where Ju

is the stable Jacobi field along the (unique) geodesic ray, say r, in I
which joins p to c/a(oo) G d^X and with initial value Ju{0) u.

By Lemma 3.1 there are orthonormal parallel fields Efs) along r and

constants Xj > 0 such that Ju(s) Jfj e~~XjSajEj(s) with u

Consequently we get J[f0) ^jajEj(0) and finally, for v J2jbjEj(0),
\Ilz(u,v)(p)\ |-£\Xjdjbjl IMIN|.

We next estimate the volumes of the boundary polyhedra. Recall from
Section 2.1 the parametrization of X by horocyclic coordinates

p: Y U x Z x A I—> X ; (m,r(m),a) i—> uma • vo

Let dx2 be the G-invariant Riemannian metric on X induced by the Cartan-

Killing form of the Lie algebra g of G and let dz2 be the invariant metric
on Z. Further let da2 (resp. du2) be the left-invariant metric on A (resp. U).
Finally set dy2 := p*dx2.

LEMMA 3.3. Eet dvy, dvu, dvz and dv& denote the volume elements of
the metrics dy2, du2, dz2 and da2. Then at the point (u,z,a) G Y we have

Tdvy p(a)~ldvu A dvy A dvA

where e ^ dim U and p is the sum of all positive roots (counted with
multiplicity); it can be written in the form p — J2azACaa> Ca A 0.

For the proof see [B2] Corollary 4.4.

Lemma 3.4. For the (n - k)-dimensional volume of each boundary
polyhedron Vg k(s) of V(s) one has the estimate

Vol (V£-*Cs)) A sq-ke~cs

where q dim A is the Q-rank of G and c > 0 is a constant (independent
of E, k and s

Proof We again consider the preimage of V^~k(s) in X under the map tt
We need to estimate the volume of each horospherical piece

W;eO) P| {Tphia -s} n
ue@

It clearly suffices to carry out the estimates for ; note that qx
For the horocyclic coordinate map ß :Yandthe canonical projection
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tca : Y —> A we set A©(.y) := -KAogi~x (TL\q{s)) C A. The set Aq(s) is contained

in an "affine" subspace of A of the form a\a*{s)Aq~k where a\a*(s) G A and

Aq~k is a q — k-dimensional subgroup of A (see Sections 3 and 4 of [L2]).
We denote the restriction of dvA to Aq~k by dvAq-k ; for k q we have
A0 e and we set dvAo 1. By Lemma 3.3 we have (for k equal to the

number of elements of 0)

Vo\[V^~k(s)) A / p(a)~l dv\j A A dvAq-k

Since the horospherical piece Wi©(s) is part of a Siegel set cSW)T with cj

relatively compact (and hence of finite volume) in UM we get

/ p(a)~xdvu A A dvAq-k A
Jfi-Wieis))

-A / dvyUdvz / p(a)~xdvAq-k A / p(a)~ldvAq-k.
J 00 JAq(S) JAq(S)

Also by definition of a Siegel set we have a(û) > r A 1 for all a G A.
Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in
[L2] show that for all a G 0 one has a(a\a*(s)) A with pa > 0.

Hence, as 0 C A is not empty and since p caa(ca > 0), there is a

uniform constant c > 0 such that p(a)~l A for all a G A©(s). As noted

above the set A ©(s) is contained in a (q — k) -dimensional affine cone in A.
It is similar (in the sense of Euclidean geometry) to A©(0) with similarity
factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get

Iaq(s) dvA«-k ^ sq~k an<^ ^e Lemma follows.

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet

theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact

type and M-rank > 2 and let T be an irreducible, torsion-free (non-uniform)
lattice in the group of isometries of X. Then for the locally symmetric space
V T\X the Gauss-Bonnet formula holds :

X(V)= f ¥dv
Jv
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