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Each polyhedron V(s) is homotopically equivalent to V. More precisely
we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric
space V is homeomorphic to the interior of the polyhedron V(s) in V, and
V(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above
exhaustion and then take the limit for s — oco. To that end we need estimates
for the second fundamental forms and the volumes of the (lower dimensional)
boundary polyhedra.

For each Siegel set S; := ¢;S which is part of the fundamental set Q we
have its truncated part '

Si(s) =8 — | (Bial®) N ) -
aEA
The top dimensional boundary faces of Si(s) in &; (resp. of Q(s) in Q)
are subsets of horospheres :

Hia(s) == {75 'hia = =5} N Si(s) , a€A.

The “horospherical” pieces H;,(s) together with their I -translates form the
boundary of the manifold with corners X(s) in X. For any nonempty subset ©
of A we set
Hio(s) := ) Hials) C Si(s).
acl

The various boundary subpolyhedra of V(s) are then unions of projections of
the pieces H;o(s) under the canonical projection 7 : X — V. More precisely,
as explained in Section 2, for any subset ® C A, we have the equivalence
relation on the set [ = {1,... ,m}

j~el if and only if T'q;Pe = I'q,Pe

(the g; are as in Proposition 2.1). This relation ~g induces a par-
tition, [(©), of the set I whose components will be denoted by E. Let
n = dimX = dimV, let k be the cardinality of © and let E ¢ I(0).
Then Vg_k(s) = W(U,EE Hi@(s)) is a (n — k)-dimensional boundary poly-
hedron of V(s); and moreover, any boundary polyhedron arises in this way
(see [L3] §4).
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REMARK. The minimal possible dimension which occurs is n — g where
g is the QQ-rank of G. It is also interesting to note (though not needed below)
that the outer angles are isomorphic to (J-Weyl chambers and their walls at
infinity.

We shall use the following well-known fact about Jacobi fields in symmetric
spaces (see [K] Theorem 2.2.9). A Jacobi field along a geodesic ray is called
stable if its length is bounded.

LEMMA 3.1. Let r : [0,00) — X be a unit-speed geodesic ray in the
symmetric space X (of noncompact type). Set p = r(0). Then the unique
stable Jacobi field J,(s) along r(s) with J,(0) =u € T,X can be written as

Ju(s) =) e aEs)
J
where {Ei(s)} is an orthonormal frame of parallel fields along r, the \; are
non-negative (uniform) constants and u = Zj a;,E;(0).

LEMMA 3.2. Let s > 0. The second fundamental forms of every boundary
polyhedron Vg‘k(s) with respect to outer angles in V(s) are uniformly bounded
by a constant independent of E, k and s.

Proof. Since the claim is local we can work in the universal covering
space X. As we noted above the preimage of Vg_k(s) in X under the projec-
tion 7 is the union of a finite number of horospherical sets

Hio(s) = () Hial®) C ({75 hia = —s},
acl aEcl

where © is a subset of A with k elements. The (inner) unit normal field of
the horosphere {77 'h;, = —s} is given by Z;, := —grad h;, (see e.g. [HI]
Proposition 3.1). Using d7 any element in the outer angle O(7w(p)) of Vg—k(s)
at a point m(p) € Vg'k(s) can then be identified with a positive linear
combination (of norm 1) of the radial fields Z;,(p), « € ©O. It therefore
suffices to show that for any pair (i,«) the second fundamental form of
Vg_k(s) relative to dnZ,, is uniformly bounded. We fix i and o and write Z
for Z,. For p € X let (., .), denote the Riemannian metric of X at p.
Let u,v € T,X be such that dm(u),dn(v) € Tw(p)Vg“k(s). Using the above
identifications the second fundamental form of Vg_k(s) C V(s) with respect
to Z can be written as

z(u,v) (p) = <DuZ> U>p .
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According to [HI], Proposition 3.1, we have D,Z(p) = J,(0) where J,
is the stable Jacobi field along the (unique) geodesic ray, say r, in X
which joins p to ci(c0) € 05X and with initial value J,(0) = u.
By Lemma 3.1 there are orthonormal parallel fields Ej(s) along r and
constants \; > 0 such that J,(s) = ZJ. e N aE(s) with u = Zj a;E;(0).
Consequently we get J;(0) = — > Aja;E;(0) and finally, for v = i biE0),

Mz, )P)| = [ = 35, Mgy | < ulllloll. O

We next estimate the volumes of the boundary polyhedra. Recall from
Section 2.1 the parametrization of X by horocyclic coordinates

p: Y =UXZXA+— X ; (u,T(m),a) — UMma - X .

Let dx? be the G-invariant Riemannian metric on X induced by the Cartan-
Killing form of the Lie algebra g of G and let dz?> be the invariant metric
on Z. Further let da® (resp. du®) be the left-invariant metric on A (resp. U).
Finally set dy? := pu*dx?.

LEMMA 3.3. Let dvy, dvy, dvz and dvs denote the volume elements of
the metrics dy*, du®, dz* and da®. Then at the point (u,z,a) € Y we have

2¢dvy = p(a)”'dvuy A dvy A dus

where e = %dimU and p is the sum of all positive roots (counted with
multiplicity); it can be written in the form p = Za@ Ca®, Cqo > 0.

For the proof see [B2] Corollary 4.4.

LEMMA 3.4. For the (n — k)-dimensional volume of each boundary
polyhedron Vg”k(s) of V(s) one has the estimate

Vol(Vg_k(s)) < sqkeg=es

?

where q = dimA is the Q-rank of G and ¢ > 0 is a constant ( independent
of E;k and s).

Proof.  We again consider the preimage of V,’}_k(s) in X under the map .
We need to estimate the volume of each horospherical piece

Hio(s) = ({2 ' hia = —s} N Ss), i€E.
«€EB

It clearly suffices to carry out the estimates for i — l; note that g, = e.
For the horocyclic coordinate map 4 : ¥ — X and the canonical projection
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7 Y — A we set Ag(s) := maop ! (ng(s)) C A. The set Ag(s) is contained
in an “affine” subspace of A of the form a;a.(s)A9* where aja.(s) € A and
A%7% is a q — k-dimensional subgroup of A (see Sections 3 and 4 of [L2)).
We denote the restriction of duy to AY™% by dwvye-r; for k = g we have
A% = ¢ and we set dvs = 1. By Lemma 3.3 we have (for k equal to the
number of elements of @)

Vol (ViE*(s)) < / p(a) L dvy A dug A dvge-x .
p (Hie(s)

Since the horospherical piece H;g(s) is part of a Siegel set S, , with w

relatively compact (and hence of finite volume) in UM we get

/ | p(a)‘ldvy A dvz N dvge—r <
w (Hels)

~ / dvU/\de/ p(a)"ldqu_k </ p(a)”ldqu_k.
w Ap(s) Ao(s)

Also by definition of a Siegel set we have afa) > 7 > 1 for all a € A.
Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in
[L2] show that for all « € ® one has a(ala*(s)) — ele® with p, > 0.
Hence, as © C A is not empty and since p = ) ., cqe(cq > 0), there is a
uniform constant ¢ > 0 such that p(a)~! < e= for all a € Ag(s). As noted
above the set Ag(s) is contained in a (g — k)-dimensional affine cone in A.
It is similar (in the sense of Euclidean geometry) to Ag(0) with similarity
factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get
| Ao (s) Was—r = s9=% and the Lemma follows. [

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet
theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact
type and R-rank > 2 and let 1" be an irreducible, torsion-free (non-uniform)
lattice in the group of isometries of X. Then for the locally symmetric space
V =T\X the Gauss-Bonnet formula holds :

x(V) = / Ydv.
14
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