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126 F. MATHÉUS

II. Le Théorème de Rodin-Sullivan:
ÉNONCÉ ET SCHÉMA DE LA PREUVE

Soit ju un ouvert simplement connexe borné de C et zo*Z\ deux points
de %. Notons ^ £(C) la triangulation de C par des triangles équilatéraux
de côté 2s dont l'ensemble des sommets est z0 + 2sZ + 2zein/3Z, et Wz{°à)
l'ensemble des triangles de 2f£(C) contenus dans Notons W\{°U) la

composante connexe de la triangulation ^s(^) contenant Zo- Si ^l(%)
est disconnectée par la suppression de certains sommets, on supprime toutes
les composantes ne contenant pas z0 ainsi obtenues. La sous-triangulation
de f g°( %~) fournie par ce procédéJ), notée ^ £, est une triangulation d'un
disque topologique. On note ^£ l'ensemble des cercles du plan de rayon 8

et centrés sur les sommets de ^ £. On observera que les cercles de ^ ne sont

pas forcément contenus dans y//.

Koebe ([Ko]) puis Andreev ([An]) et Thurston ([Thl], [Ma-R]) ont
démontré qu'il existe alors une famille ^£ de cercles bordant des disques

d'intérieurs deux à deux disjoints, contenus dans le disque unité D de C,
et vérifiant:

i) J^£ est en bijection avec ^£;
ii) deux cercles de %fz sont tangents si et seulement si les cercles

correspondants dans le sont;

Iii) les cercles de correspondants aux cercles du bord de ^ sont

tangents au cercle unité.

Une telle famille (cf. fig. 1) s'appelle un empilement de cercles d'Andreev de

combinatoire où désigne le 1-squelette de ¥e. Elle est unique à

transformation de Möbius près. Elle sera donc parfaitement déterminée si

on demande que soit vérifiée une condition de normalisation que nous
formulons ci-après.

Soit /£ l'application définie de la manière suivante:

— si z est le centre d'un cercle de <^£, alors /£(z) est le centre du cercle

correspondant de ^£;
— on prolonge /E à chaque triangle de ^£ en une application affine.

La condition de normalisation est alors:

iv) Mzo) 0 et fe(zi) > 0.

Voici une autre façon de la définir: on ne conserve que les triangles T de
v/£ (%) pour lesquels il existe une suite de triangles de V £ V/) telle que chacun ait une
arête commune avec le suivant, et reliant T à un triangle contenant zq.
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Enfin, notons / : T/ D l'uniformisation de Riemann de normalisée

par f{zo) 0 et f(zx) > 0. Rodin et Sullivan ont montré le

Théorème. Lorsque s tend vers 0, fe converge vers f
uniformément sur les compacts de %.

C'est ce théorème que nous nous proposons de redémontrer ici. La

première étape est la

Proposition. Il existe une constante K ^ 1 telle que chaque fe soit

K-quasiconforme. De plus, si une sous-suite (/£/) converge uniformément

sur les compacts de % vers une fonction g, alors g est un homéo-

morphisme K-quasiconforme de % sur D.

La preuve utilise les arguments de [R-S] qui sont désormais classiques et

que nous reproduisons ici. Ils reposent sur les deux lemmes géométriques

suivants :

Lemme de l'anneau («Ring Lemma» dans [R-S]). Soit c un cercle de

rayon p et cu...,cnn cercles tangents extérieurement à c, d'intérieurs
deux à deux disjoints, tels que C\ soit tangent à cj+ x et cn tangent
à c i.

Il existe une constante xn > 0 ne dépendant que de n telle que chaque
cercle c,( 1 ^ ^ h) ait un rayon au moins égal à xnç>.

Preuve du lemme de l'anneau. Fixons n. Tout d'abord, le rayon du plus
grand cercle extérieur, par exemple cj, est minoré par une constante ne

dépendant que de n (obtenue lorsque tous les cercles extérieurs ont même

rayon). Le rayon d'un cercle c2 tangent à cq est également minoré universellement,

car si il était trop petit, une chaîne de n - 1 cercles partant de c2 ne

pourrait pas s'échapper de l'interstice entre cx et c. On achève la preuve en

répétant le raisonnement pour le cercle c3 tangent à c2 et ainsi de suite.

Le lecteur poura consulter [Ha] pour des estimations de la constante xn.
Une suite de cercles cq, cn deux à deux distincts de est une chaîne

lorsque c,- et ci+ x sont tangents si 1^/^/7-1, ainsi que c„ et cx si ces

derniers ne sont pas tangents au cercle unité. Le second lemme est le

Lemme des chaînes séparantes («Length-area lemma» dans [R-S]).
Soit c un cercle de et sx, ...,s> k chaînes disjointes qui séparent
chacune c de l'origine et d'un point du cercle unité. Notons nx, ...,nk
les longueurs combinatoires de ces chaînes. Alors on a:

rayon (c) ^ —
Vrt + r2+ + rk
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Figure 1

(aimablement fournie par Ken Stephenson):

trois empilements dans Jâ et les trois empilements d'Andreev associés dans D
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Preuve du lemme des chaînes séparantes. Notons p/j, 1 ^ i < nj9 les

rayons des cercles de la chaîne Sj. D'après l'inégalité de Schwarz, on a:

/ nJ \2 "J
9I Py, / < nJ E Pi, / •

nj
Soit lj-2 £ p/)7 la longueur géométrique de la chaîne Sj. On a donc

/= i

il n j kl2 Ä- nj

- ^4 l p2,, donc S - E E Pi, / ^ 4

nj i= i y=i nJ y i / i

de sorte que / minj/j, 4} vérifie:

* 1

/2 E - < 4

i= i nj

A cause de l'hypothèse de séparation, / est plus grand que le diamètre de c,

d'où le résultat.

Preuve de la proposition. Notons Wz la triangulation obtenue à partir
de ^P8. Le lemme de l'anneau appliqué avec n 6 montre que les angles des

triangles de We sont minorés par une constante > 0, de sorte que l'application

/e envoie des triangles équilatéraux sur des triangles dont la distorsion
est bornée par une constante indépendante de s. Ceci assure l'existence d'une
constante K telle que pour tout s, /£ est iCquasiconforme.

Notons (resp. D&) le domaine de définition (resp. l'image) de /£.
(resp. De) n'est rien d'autre que la réunion des triangles de P^£ (resp.

<^e). Il est clair que tout compact de % est contenu dans ^£ pour s

assez petit.
Comme les /s sont iC-quasiconformes, et que /e(zo) 0, Vs, elles

forment une famille équicontinue sur les compacts de et donc une famille
normale pour la topologie de la convergence uniforme sur les compacts
de (voir [Ahl], théorème 1, p. 51). Examinons les propriétés de n'importe
quelle fonction g limite d'une sous-suite {/e.}. Déjà, g est définie sur % et

est TCquasiconforme; g est injective car chaque /s l l'est. Montrons main-
o

1

tenant que l'image de g est D tout entier.
Il suffit pour cela de montrer que tf^r(öD8 ; 0Z>) tend vers 0 avec

s (d//r désigne la distance de Hausdorff). Or, lorsque s - 0, chaque cercle c
du bord est séparé de l'origine et d'un point du cercle unité par de plus
en plus de chaînes de longueurs ^ 6, 12, 18... Le lemme des chaînes séparantes
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et la divergence de la série harmonique prouvent que le rayon de c tend

vers 0 avec 8, d'où le résultat.
Toute fonction g limite de /e est donc un homéomorphisme A'-quasi-

o
1

conforme de ^ sur D.

Le but des sections qui suivent est de prouver le résultat crucial suivant:

Lemme-clé. Soit C un compact de c et c' deux cercles

tangents de centrés dans C et c, c' les cercles de qui leur

correspondent.

Alors ^yoM^ ten^ vers 1 lorsque 8 - 0, uniformément sur C.

Signalons que c'est dans la preuve de ce lemme-clé donnée par Rodin

et Sullivan qu'intervient leur résultat de rigidité de l'empilement hexagonal

standard, argument que nous nous proposons justement de contourner.
La méthode que nous allons suivre permet d'ailleurs d'obtenir un résultat

plus fort:

Version quantitative du lemme-clé. Avec les mêmes notations, il
existe une constante M ne dépendant que de C telle que

rayon(c)
^

rayon (c')
M

< —-—
y - Loge

uniformément sur C.

Nous terminons cette section en montrant comment le lemme-clé permet
de conclure. Ce lemme montre que la restriction à C de chaque /e envoie

des triangles équilatéraux sur des triangles dont les angles tendent vers

f lorsque 8 - 0, de sorte que toute limite g des /e est 1-conforme,
c'est-à-dire holomorphe sur (voir [Ahl], théorème 2, p. 23).

Récapitulons: la famille {/e} possède au moins une sous-suite convergeant
uniformément sur les compacts de et la limite de toute telle sous-suite est

O

une bijection holomorphe de sur D envoyant Zo sur 0 et Z\ sur l'axe réel

positif, c'est-à-dire est l'uniformisation de Riemann / de ^ ainsi normalisée.

Le théorème en résulte aussitôt.

III. Déformations d'empilements de cercles

On va construire une famille continue d'empilements de cercles

o,i] telle que <^E et et on va étudier la façon
dont varient, en fonction de t, les rayons des cercles de
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Comme l'ouvert % est borné, il est tout à fait licite de supposer que

% est contenu dans D et que Zo 0 et Zi>0, de sorte que tous les

empilements que l'on va considérer seront contenus dans le disque unité D.

A partir de maintenant nous adoptons le point de vue de la géométrie

hyperbolique: D est muni de la métrique hyperbolique ds2 (14_j^[2)2 à

courbure - 1. Tout cercle hyperbolique est un cercle euclidien (mais les centres

ne sont pas les mêmes). En particulier, les cercles du bord d'un empilement
d'Andreev sont des horocycles. C'est ce dernier fait qui motive l'emploi de la

géométrie hyperbolique.
Il faut maintenant généraliser la notion d'empilement de cercles.

Soit W une triangulation (finie ou infinie) d'un disque topologique et S

l'ensemble des sommets de W. Soit r (r5)seSe(RÎ)5, On munit chaque

triangle de g? de la métrique hyperbolique à courbure - 1 qui au côté ss'
affecte la longueur rs + rs>. On obtient ainsi une variété riemanienne à

courbure - 1 à singularités coniques, notée Wr. Soit s un sommet d'un
triangle T de W. Si a (s, T) désigne l'angle en s dans le triangle T et si s

est un sommet intérieur, alors la courbure en s est:

Ks(r)2n~£ a T)
s e T

La famille de cercles & {Cs; s e S}, où Cs est le cercle de Wr de

centre s de rayon rS9 possède la propriété suivante: les cercles Cs et Cs> sont
tangents si et seulement si l'arête ss' appartient au 1-squelette de la
triangulation ïï).

Si, pour tout sommet intérieur s, on a Ks(r) 0, alors la variété Wr est

immergée isométriquement dans le disque de Poincaré Dhyp (mais non
plongée a priori). On dit alors que % est un empilement de cercles de

combinatoire F1. De plus, ^ est un empilement d'Andreev si et seulement
si pour tout sommet s du bord de g?, rs + oo.

Remarque. Un empilement d'Andreev est plongé dans le disque de
Poincaré. En effet, la variété immergée ?or est alors à bord convexe, donc
plongée d'après le théorème du §3 de [CV].

Le résultat suivant, démontré par Yves Colin de Verdière dans [CV] §5,
est aussi le théorème 3 de [B-St2]:

Théorème. Soit W une triangulation finie d'un disque topologique,
S (resp. B, I) l'ensemble de ses sommets (resp. sommets du bord; sommets
intérieurs).

Alors pour tout (rs)s 6 B e]0, + oo]u existe un unique (r?)5e/
e (R*)7 tel que la variété SF, soit immergée isométriquement dans Dhyp.
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On notera que le théorème d'Andreev-Thurston est un cas particulier de

ce théorème (faire rs +00,Vs e B).
Soit O : [0, 1[ [1, + 00 [, t 0(0 un difféomorphisme prolongé par

O(l) +00. Nous reprenons maintenant les notations de la section II.
Pour t e [0, 1], Pf g

est défini par les trois conditions suivantes:

i) la combinatoire de est W\\

il) si rz est le rayon d'un cercle du bord de le rayon du cercle

correspondant de est rz(t) &(t)rz;
iii) la condition de normalisation est la même que pour %fz.

Notons Sz (resp. BZ,IZ) l'ensemble des sommets (resp. sommets du bord,
sommets intérieurs) de Wz. Pour 5 e 5£ on pose :

Î-f
00 ^ ^ 5

- Log tanh ^
r| smh o 2

(c'est la variable utilisée par Yves Colin de Verdière dans [CV]). On va

interpréter la famille {^Wg(0}J65 comme solution d'un problème de

Schrödinger discret.

Notons wf (K)seBee[0, + <»[**(resp. e [0, + oo['s)
une famille de réels indexée par Bz (resp. /8). Dans [CV], Yves Colin
de Verdière construit une fonctionnelle F: R+8 x R7+e R qui possède la

propriété suivante: si djF désigne la différentielle partielle de F par rapport
aux variables indexées par Iz, alors on a <i/F(wf, u[) 0 si et seulement

si la collection des rayons {^_1(Wg)}J6s£ définit un empilement de cercles

de combinatoire g? I.
Signalons que c'est ce choix de variable us& qui confère à la

fonctionnelle F certaines propriétés — convexité, — lui assurant l'existence d'un
point critique.

Explicitons la dérivée d/F. Pour ce faire, à tout vecteur uz (use)seSe

e R+E on associe la variété hyperbolique Wrz à courbure - 1 à singularités

coniques définie plus haut avec rz (rs&)seSz où rsz ¥ ~1 (use). Notant
Ks(ue) la courbure en s on a:

dIF(ue)£
S e h

Dans le cas présent, pour tout t e [0, 1], la collection des rayons
{^e(0}sesE définit un empilement de cercles de combinatoire Wz de sorte

que l'on a, en posant us&(t) ¥(rg(f)),

Vf e [0,1], drF[uf(t)
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Par dérivation, il vient:

duF[ul(t),u[{t)\ ù[(t)+ dBIF[uBz{t), u[(t)] ùf(t) 0

d'où:

We[0, 1], I f I 8^[";(°] 0

sei, 1 sr e S £ OU£ I

\ dc(s, s') ^ 1 /

(dc désigne la distance combinatoire dans le graphe S?E). On rappelle que

d'après la formule de Gauss-Bonnet, l'aire d'un triangle hyperbolique T

d'angles a, ß, y est A(T) n - a - ß - y, de sorte que, pour tout sommet

intérieur 6", on a:

8KM dKs
+ y &Ks_ y SA(T)

s'eSE duSe duse s'~s 8Wg 735 8Wg

(on note s' ~ s pour s' voisin de s). Pour alléger les notations, on pose,

pour s e 7e, et s' e Se voisin de s,

8Ks v dA(T) 8Ks
cs 1- L et css> ;

8 use rts 8 usB 8 u\

Soit b: Be -+ R une fonction numérique. A toute fonction cp e R7e prolongée

par b sur £s on associe les fonctions A^'rcp Aöcp e RL et JAp e RL définie
respectivement par : pour tout s e /8,

(Aft(p) (s) cs(p(5) + Y, C„'Cp(s')
s' ~ s

et (Ftp) (s) F(s)cp(s) (- Y —9(5)
\ 8us

Les relations suivantes:

G + ^ css' — 0, css' < 0; cs > 0; c55/ cS'S
s' ~ s

font de A0 un laplacien discret sur /E, c'est-à-dire un endomorphisme
symétrique défini positif de RA. Le fait que F(,s) soit > 0 fait de A0 + Fun
opérateur de Schrödinger discret sur 7e (comparer avec [CV-M], section V).

En résumé, le vecteur ùs(t)(ME(0Le$s est solution de l'équation
de Schrödinger suivante:

Aj' 'ws + VÛe 0

ùl(t)b(s) ®'(0 • T'[rj(0] • rj(0) si 5 e Bt.
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En particulier, use(t) < 0 si s e Be (car O' > 0 et VFA < 0). Or on dispose
d'un principe du maximum pour les opérateurs de Schrödinger discrets:

Lemme. Soit pour tout s e Ie et s' e S£ voisin de Iz un réel
bSS' e]0, 1[ tel que £ bss> < 1, Vs.

s' ~ s

Soit cp e R5e une fonction telle que Vs e 7e, (p (s) £ bSS'(p(s').
s' ~ s

Alors, si (p est ^ 0 sur Be, (p est également ^0 sur 7e. Si

déplus cp s'annule sur 7e, alors cp est nulle sur Se.

Preuve du lemme. On observe tout d'abord que si (p(5) > 0 pour un
s e Is alors il existe s' — s tel que cp(s') > (p(s), car, dans le cas contraire,
on a

<p(s) E ô„<<p(s') ^ I £ bss' <P(V < <P(X) qui est absurde.
s' ~ s y s' ~ S J

De proche en proche on aboutit à un sommet sx e Bz tel que (p(si)
> cp (.s) > 0, de sorte que cp ^ 0 sur Bz implique cp ^ 0 sur 7e. Sachant

maintenant que cp est ^0 sur Se, supposons qu'il existe s e Ie tel que
(p(s) 0. Il est clair que (p(s') 0, Vs' ~ De proche en proche, on
montre que cp est nulle sur Se.

On applique le lemme aux coefficients bSS' - Cs
> 0 et on déduit

que pour tout s e Iei ùs£(t) < 0. Comme use(t) rse(t) x ^'[^(O] Que

x¥f est < 0 on déduit que rsF(t) est > 0, V5 e 7e, W e [0, 1]. En résumé,

lorsque t croît de 0 à 1, les rayons hyperboliques de tous les cercles de

augmentent strictement.
Le fait que nous venons de mettre en évidence est l'aspect essentiel d'un

résultat, le lemme de Schwarz-Pick discret, qui mérite d'être formulé
— et démontré — de façon autonome. Outre le fait que nous utiliserons ces

résultats dans la prochaine section, signalons qu'il a fait l'objet de travaux
d'Alan Beardon et Kenneth Stephenson (voir [B-St2]).

Soit S l'ensemble des sommets d'une triangulation W d'un disque
topologique. Soient r (rs)seS et r' (r's)seS e (R%) et Wr, Wr> les variétés

hyperboliques à courbure - 1 à singularités coniques définies comme

précédemment à partir de r et r\
On note Cs (resp. C's) le cercle de Wr (resp. §v) de centre s et de rayon

rs (resp. r's). On suppose que les familles 7? {C^}5e5et c£' {C^}56iS sont
des empilements de cercles, c'est-à-dire que Wr et Wr> sont immergées

isométriquement dans le disque de Poincaré. Rappelons que et cë' ne

sont pas supposés plongés (comparer à [B-St2]).
On a la
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Proposition (Lemme de Schwarz-Pick discret dans [B-St2]).

i) (monotonie). Si rs ^ r's pour tout sommet frontière s, alors

rs ^ r's pour tout sommet intérieur s. De plus, si rSQ r'SQ pour un

sommet intérieur s0 alors Vs e S, rs r's;

ii) (lemme de Schwarz discret). Si fP est un empilement d'Andreev

(i.e. r's + oo pour s e B) alors rs ^ r's, Vs e S;

iii) (lemme de Pick discret). Si cé" est un empilement d'Andreev
alors la distance entre deux sommets s0 et s{ dans Wr est inférieure
à la distance entre les deux sommets correspondants dans Wf*.

Preuve de la proposition. Prouvons le point i). On réalise la variété

§V, comme le temps 1 d'une déformation {Wr(t) ; t e [0, 1]} de la

variété Wr comme ci-avant, à ceci près que les rayons frontières de Wr(f)
sont définis par

us(t) V(rs(t)) (1 - t)W(rs) + M(r's)

Pour tout t, il existe un opérateur de Schrödinger discret À' + Vt sur
(le 1-squelette de §?) tel que:

'

A'ii(f) + V'ù(t) 0

ùs(t) *F(r^) - *F(rs) si s e B.

Comme ¥ est décroissante, on a us(t) ^ 0, Vs e B. D'après le principe du
maximum pour les opérateurs de Schrödinger on a également ùs(t) ^ 0

pour tout sommet intérieur 5-, donc ^ *F(rs) donc r's ^ rs pour ces

sommets. De plus, rSQ r'SQ pour un sommet intérieur s0 implique
ùSo(t) 0, Vt e [0, 1] donc, d'après le même lemme, ùs(t) 0, Vt, Vs e S

et donc rs r's, Vs e S.

Les points ii) et iii) résultent de (i).

IV. Estimations à priori des rayons

Soit K un compact d'intérieur non vide contenu dans et Sf l'ensemble
des sommets de contenus dans K. On note re (rsE)seSe la collection
des rayons de l'empilement d'Andreev Le but de cette section est
de démontrer la
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