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126 F. MATHEUS

[I. LE THEOREME DE RODIN-SULLIVAN:
ENONCE ET SCHEMA DE LA PREUVE

Soit # un ouvert simplement connexe borné de C et z,, z; deux points
de . Notons 7 .(C) la triangulation de C par des triangles équilatéraux
de cOté 2¢ dont ’ensemble des sommets est zo + 2eZ + 2ee™3Z, et 7 (%)
’ensemble des triangles de 7 .(C) contenus dans %. Notons 7 (%) la
composante connexe de la triangulation 7.(%) contenant z,. Si 72 S(%)
est disconnectée par la suppression de certains sommets, on supprime toutes
les composantes ne contenant pas z, ainsi obtenues. La sous-triangulation
de 7 (%) fournie par ce procédé!), notée 7, est une triangulation d’un
disque topologique. On note 77, ’ensemble des cercles du plan de rayon ¢
et centrés sur les sommets de 7 .. On observera que les cercles de 77, ne sont
pas forcément contenus dans %.

Koebe ([Ko]) puis Andreev ([An]) et Thurston ([Thl], [Ma-R]) ont
démontré qu’il existe alors une famille j/g de cercles bordant des disques
d’intérieurs deux a deux disjoints, contenus dans le disque unité D de C,
et vérifiant:

i) 2%, est en bijection avec 7#%;

ii) deux cercles de 97/8 sont tangents si et seulement si les cercles
correspondants dans 7 le sont;

iii) les cercles de 74 correspondants aux cercles du bord de 77, sont
tangents au cercle unité.
Une telle famille (cf. fig. 1) s’appelle un empilement de cercles d’Andreev de
combinatoire 7! ou 7| désigne le 1-squelette de 7Z,. Elle est unique a
transformation de Mobius prés. Elle sera donc parfaitement déterminée si
on demande que soit vérifiée une condition de normalisation que nous
formulons ci-apres.

Soit f. I’application définie de la maniere suivante:

— si z est le centre d’un cercle de 77, alors f.(z) est le centre du cercle
correspondant de 777;

— on prolonge f, a chaque triangle de 7. en une application affine.

La condition de normalisation est alors:
iV) fs(ZO) =0 et fa(zl) > 0.

1) Voici une autre facon de la définir: on ne conserve que les triangles T de
7 9(%) pour lesquels il existe une suite de triangles de 7 (%) telle que chacun ait une
aréte commune avec le suivant, et reliant 7 a4 un triangle contenant zg.
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Enfin, notons f: # — D Puniformisation de Riemann de % normalisée
par f(zo) = 0 et f(z;) > 0. Rodin et Sullivan ont montré le

THEOREME. Lorsque ¢ tend vers 0, f; converge vers f unifor-
mément sur les compacts de .

C’est ce théoréme que nous nous proposons de redémontrer Icl. La
premiere étape est la

PROPOSITION. I/ existe une constante K > 1 telle que chaque [, soit
K-quasiconforme. De plus, si une sous-suite (f,) converge uniformément
sur les compacts de 7 vers une fonctiorg g, alors g est un homéo-
morphisme K-quasiconforme de < sur D.

La preuve utilise les arguments de [R-S] qui sont désormais classiques et
que nous reproduisons ici. Ils reposent sur les deux lemmes géometriques
suivants:

LEMME DE L’ANNEAU («Ring Lemma» dans [R-S]). Soit ¢ un cercle de
rayon p et ci,...,C, n cercles tangents extérieurement a c, d’intérieurs
deux a deux disjoints, tels que c; soit tangent a c;,, et ¢, tangent

N

a C;.

Il existe une constante T, > 0 ne dépendant que de n telle que chaque
cercle ¢;(1 <i<n) ait un rayon au moins égal a 71,p.

Preuve du lemme de ’lanneau. Fixons n. Tout d’abord, le rayon du plus
grand cercle extérieur, par exemple c;, est minoré par une constante ne
dépendant que de n (obtenue lorsque tous les cercles extérieurs ont méme
rayon). Le rayon d’un cercle ¢, tangent a c; est également minoré universel-
lement, car si il était trop petit, une chaine de n — 1 cercles partant de ¢, ne
pourrait pas s’échapper de l'interstice entre c; et ¢. On achéve la preuve en
répétant le raisonnement pour le cercle ¢; tangent a ¢, et ainsi de suite. [ ]

Le lecteur poura consulter [Ha] pour des estimations de la constante t,,.

Une suite de cercles ¢y, ..., ¢, deux a deux distincts de (’?;”8 est une chaine
lorsque c; et c¢;,; sont tangents si 1 <i< n — 1, ainsi que ¢, et ¢; si ces
derniers ne sont pas tangents au cercle unité. Le second lemme est le

LEMME DES CHAINES SEPARANTES («Length-area lemma» dans [R-S]).

Soit ¢ un cercle de 7, et si,...,S; kK chaines disjointes qui séparent
chacune c¢ de [l'origine et d’un point du cercle unité. Notons n,, ..., Ny
les longueurs combinatoires de ces chaines. Alors on a:

1

rayon(c) <
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FIGURE 1
(aimablement fournie par Ken Stephenson):

trois empilements 7 dans # et les trois empilements d’Andreev associés 7, dans D
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Preuve du lemme des chaines séparantes. Notons p; j, 1 << n;, les
rayons des cercles de la chaine S;. D’aprés l'inégalité de Schwarz, on a:

nj 2 nj 5
(E pj,i) < A E Pji-

i=1 i=1

nj
Soit [; =2 Y p;,; la longueur géométrique de la chaine S;. On a donc

i=1

/2 B ko ]? koono
< <4V pl;, donec ¥ 4 <4y ¥ opji<4
n; i=1 i=1 1 j=1i=1
de sorte que / = min{/,, ..., [y} vérifie:
|
2y — 4.
j=1 nj

A cause de I’hypothése de séparation, / est plus grand que le diametre de c,
d’ou le résultat. [

Preuve de la proposition. Notons & . la triangulation obtenue a partir
de 2#.. Le lemme de I’anneau appliqué avec #n = 6 montre que les angles des
triangles de %, sont minorés par une constante > 0, de sorte que ’appli-
cation f. envoie des triangles équilatéraux sur des triangles dont la distorsion
est bornée par une constante indépendante de €. Ceci assure 1’existence d’une
constante K telle que pour tout €, f, est K-quasiconforme.

Notons %, (resp. D;) le domaine de définition (resp. I’image) de f;.
% (resp. Dg) n’est rien d’autre que la réunion des triangles de 27, (resp.
9’;”8). Il est clair que tout compact de % est contenu dans %, pour &
assez petit.

Comme les f, sont K-quasiconformes, et que f:(zo) = 0, Ve, elles
forment une famille équicontinue sur les compacts de %, et donc une famille
normale pour la topologie de la convergence uniforme sur les compacts
de % (voir [Ahl], théoréme 1, p. 51). Examinons les propriétés de n’importe
quelle fonction g limite d’une sous-suite { f¢,}. Déja, g est définie sur % et
est K-quasiconforme; g est injective car chaque f;,, ’est. Montrons main-
tenant que 1’image de g est D tout entier.

Il suffit pour cela de montrer que d_(8D.;dD) tend vers 0 avec
& (d » désigne la distance de Hausdorff). Or, lorsque € — 0, chaque cercle ¢
du bord est séparé de I’origine et d’un point du cercle unité par de plus
en plus de chaines de longueurs < 6, 12, 18... Le lemme des chaines séparantes
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et la divergence de la série harmonique prouvent que le rayon de ¢ tend
vers 0 avec g, d’ou le résultat.

Toute fonction g limite de f., est donc un homéomorphisme K-quasi-
conforme de % sur D. [J

Le but des sections qui suivent est de prouver le résultat crucial suivant:

LEMME-CLE. Soit C un compact de %,c et c¢' deux cercles
tangents de ¢, centrés dans C et c,c’ les cercles de 27, qui leur
correspondent.

rayon(c)
Alors

tend vers 1 lorsque € — 0, uniformément sur C.

rayon(c"’)

Signalons que c’est dans la preuve de ce lemme-clé donnée par Rodin
et Sullivan qu’intervient leur résultat de rigidité de ’empilement hexagonal
standard, argument que nous nous proposons justement de contourner.
La méthode que nous allons suivre permet d’ailleurs d’obtenir un résultat
plus fort:

VERSION QUANTITATIVE DU LEMME-CLE. Avec les mémes notations, il
existe une constante M ne dépendant que de C telle que

rayon(c) Jupds M

rayon(c”’) £ )V — Loge
uniformément sur C.

Nous terminons cette section en montrant comment le lemme-clé permet
de conclure. Ce lemme montre que la restriction a C de chaque f. envoie
des triangles équilatéraux sur des triangles dont les angles tendent vers
7 lorsque € — 0, de sorte que toute limite g des f. est 1-conforme,
c’est-a-dire holomorphe sur % (voir [Ahl], théoréme 2, p. 23).

Récapitulons: la famille { .} posséde au moins une sous-suite convergeant
uniformément sur les compacts de %, et la limite de toute telle sous-suite est
une bijection holomorphe de % sur lo) envoyant z, sur 0 et z; sur I’axe réel
positif, ¢’est-a-dire est ’'uniformisation de Riemann f de % ainsi normalisée.
Le théoréme en résulte aussitot.

III. DEFORMATIONS D’EMPILEMENTS DE CERCLES

On va construire une famille continue d’empilements de cercles
{2} eron telle que 70 = 2#, et #°! = #, et on va étudier la facon
dont varient, en fonction de 7, les rayons des cercles de 77 ;.
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Comme P’ouvert % est borné, il est tout a fait licite de supposer que
% est contenu dans lo) et que z0=0 et z; >0, de sorte que tous les
empilements que 1’on va considérer seront contenus dans le disque unité D.

A partir de maintenant nous adoptons le point de vue de la géomzétrie
hyperbolique: D est muni de la métrique hyperbolique ds? = (—li_l—‘(—;l—z);
courbure — 1. Tout cercle hyperbolique est un cercle euclidien (mais les centres
ne sont pas les mémes). En particulier, les cercles du bord d’un empilement
d’Andreev sont des horocycles. C’est ce dernier fait qui motive ’emploi de la
géométrie hyperbolique.

I faut maintenant généraliser la notion d’empilement de cercles.
Soit & une triangulation (finie ou infinie) d’un disque topologique et S
I’ensemble des sommets de @. Soit r = (r5)s;cs € (R*)S. On munit chaque
triangle de @ de la métrique hyperbolique a courbure — 1 qui au coté ss’
affecte la longueur r; + ;. On obtient ainsi une variété riemanienne a
courbure — 1 a singularités coniques, notée ©,. Soit s un sommet d’un
triangle 7 de @. Si a(s, T) désigne I’angle en s dans le triangle 7 et si s
est un sommet intérieur, alors la courbure en s est:

Ki(r)y=2n- Y a(s,T).
seT

La famille de cercles ¥ = {C,;s € S}, ou C, est le cercle de &, de
centre s de rayon rs, posseéde la propriété suivante: les cercles C; et C,. sont
tangents si et seulement si ’aréte ss’ appartient au 1-squelette @! de la
triangulation @.

Si, pour tout sommet intérieur s, on a K,(r) = 0, alors la variété @, est
immergée isométriquement dans le disque de Poincaré Dy,, (mais non
plongée a priori). On dit alors que % est un empilement de cercles de
combinatoire ©!. De plus, % est un empilement d’Andreev si et seulement
si pour tout sommet s du bord de 7, r, = + .

REMARQUE. Un empilement d’Andreev est plongé dans le disque de
Poincaré. En effet, la variété immergée &, est alors 4 bord convexe, donc
plongée d’aprés le théoréme du §3 de [CV].

Le résultat suivant, démontré par Yves Colin de Verdiére dans [CV]§5,
est aussi le théoréme 3 de [B-St2]:

THEOREME. Soit & une triangulation finie d’un disque topologique,
S (resp. B, I) I’ensemble de ses sommets (resp. sommets du bord; sommets
intérieurs).

Alors pour tout (ry)scp€l0, + |8, il existe un unique (rg)se;
€ R¥)" tel que la variété 7, soit immergée Isométriquement dans Dpy, -
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On notera que le théoréme d’Andreev-Thurston est un cas particulier de
ce théoreme (faire r, = + o, Vs € B).

Soit ®@:[0,1[ > [1, + oo, ¢ ®(¢) un difféomorphisme prolongé par
®(1) = + . Nous reprenons maintenant les notations de la section II.
Pour ¢ € [0, 1], 27 2 est défini par les trois conditions suivantes:

i) la combinatoire de 27! est &, ;

ii) si r; est le rayon d’un cercle du bord de 57, le rayon du cercle
correspondant de 27! est r, (1) = ®(¢)r,;

iii) la condition de normalisation est la méme que pour j/a.

Notons S, (resp. B, I.) I’ensemble des sommets (resp. sommets du bord,
sommets intérieurs) de @.. Pour s € S, on pose:

+ oo s
doc r.
= — Logtanh 5

s sinh o

ul =) = s
re

(c’est la variable utilisée par Yves Colin de Verdiere dans [CV]). On va

interpréter la famille {% uz(t)}sesg comme solution d’un probléme de

Schrodinger discret.

Notons u? = (ul)scp, € [0, + o [B: (resp. u.= (Ul)scr, € [0, + o0 [le)
une famille de réels indexée par B, (resp. I;). Dans [CV], Yves Colin
de Verdiére construit une fonctionnelle F :Rl_’;E X R’f—> R qui possede la
propriété suivante: si d;F désigne la différentielle partielle de F par rapport
aux variables indexées par I, alors on a d;F(u’Z, ul) = 0 si et seulement
si la collection des rayons {¥ ~!(u;)}ses, définit un empilement de cercles
de combinatoire & | .

Signalons que c’est ce choix de variable u; qui confére a la fonc-
tionnelle F certaines propriétés — convexité, ... — lui assurant I’existence d’un
point critique.

Explicitons la dérivée d;F. Pour ce faire, a tout vecteur u; = (#;)ses,
€ R‘ff on associe la variété hyperbolique @, a courbure — 1 a singularités
coniques définie plus haut avec r. = (ry)ses, ou ry =¥ !(u;). Notant
K (ug) la courbure en s on a:

diF(u;) = Y, Kg(u;)du’ .

selg

Dans le cas présent, pour tout ¢ e [0,1], la collection des rayons
{r;(#)}ses, définit un empilement de cercles de combinatoire #. de sorte
que ’on a, en posant u; () = P (ri(z)),

Vte[0,1], d;F[ul@),ul(®)]=0.
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Par dérivation, il vient:
dI]F[ugB(t)3 Ué(t)] ’ ué(f) + dBIF[uf(t)’ Ué(t)] ’ ugB(t) =0,
d’ou:

vielo, 11, ¥ ) Mu

s
selg s"e S, Bus
dq(s,s") <1

J(0)) dui =0

(d. désigne la distance combinatoire dans le graphe ©.). On rappelle que
d’aprés la formule de Gauss-Bonnet, 1’aire d’un triangle hyperbolique T
d’angles a, B,y est A(T) =n — a — B — v, de sorte que, pour tout sommet

intérieur s, on a:
0K, (u,) 0K, 0K, 0A(T)
) =—+ X =

s 4 s
s'eS; auz aui s'~s aui Tss OU,

(on note s’ ~ s pour s’ voisin de s). Pour alléger les notations, on pose,
pour s € I, et s" € S; voisin de s,

0K N 0A(T) 0K,

-
ou,

Cs =

- ¢ Cosr =
BUZ T>s GUZ

Soit b: B, — R une fonction numérique. A toute fonction ¢ € R’: prolongée

par b sur B, on associe les fonctions Ay ¢ = A, ¢ € Rz et Vo e R/s définie

respectivement par: pour tout s € I,

(Ap®)(8) = C;0(8) + Y Cor@(s)

s’ ~s

QA(T
et (Vo) (s) = V(s)o(s) = (— ) D

Tss auz

)(p(S)-

Les relations suivantes:

Cs + Z Cssr = Os Cssr < O, Cs > Oa Css' = Cyrs
s ~s
font de A un laplacien discret sur I, c’est-a-dire un endomorphisme symé-
trique défini positif de R’:. Le fait que V(s) soit > 0 fait de Ay + V un
operateur de Schrodinger discret sur I, (comparer avec [CV-M], section V).

En résumé, le vecteur u.(¢) = (u3(¢))scs, est solution de I’équation
de Schrodinger suivante:

{ Ayug + Vig =0
Uy (1) = b(s) = @'(t) - ¥ [ri(t)] - r5(0) si seB,.



134 F. MATHEUS

En particulier, u$(¢) <0 si s € B; (car ®' > 0 et ¥’ < 0). Or on dispose
d’un principe du maximum pour les opérateurs de Schrodinger discrets:

LEMME. Soit pour tout sel, et s €S8, voisin de I, un réel
bss» €]0, 1] tel que Y by < 1,Vs.

s'~s

Soit @ € RS une fonction telle que Vsel,, p(s) = Y b o(s).

s’ ~s
Alors, si. ¢ est <0 sur By, ¢ estégalement <0 sur I,. Si
de plus ¢ s’annule sur 1., alors ¢ est nulle sur S;.

Preuve du lemme. On observe tout d’abord que si ¢(s) > 0 pour un
s € I, alors 1l existe s” ~ s tel que ¢(s’) > ¢(s), car, dans le cas contraire,
on a
Q(s) = Z b @(s) < ( Z bssf) @ (s) < @(s) qui est absurde.

s’ ~s s’ ~s

De proche en proche on aboutit a un sommet s; € B, tel que ¢@(s;)
> @(s) > 0, de sorte que ¢ <0 sur B, implique ¢ <0 sur ;. Sachant
maintenant que ¢ est <0 sur S., supposons qu’il existe s € I tel que
@(s) = 0. Il est clair que ¢(s’) =0, Vs" ~s. De proche en proche, on
montre que ¢ est nulle sur S,. [

Css’

On applique le lemme aux coefficients by, = — e 0 et on déduit
que pour tout s € I, ul(f) < 0. Comme u:(¢) = ri(t) x P'[ri(¢)] et que
¥’ est < 0 on déduit que ri(z) est >0, Vs € I, V¢ € [0, 1]. En résumé,
lorsque ¢ croit de 0 & 1, les rayons hyperboliques de tous les cercles de 77|

augmentent strictement.

Le fait que nous venons de mettre en évidence est 1’aspect essentiel d’un
résultat, le lemme de Schwarz-Pick discret, qui mérite d’&tre formulé
— et démontré — de facon autonome. Outre le fait que nous utiliserons ces
résultats dans la prochaine section, signalons qu’il a fait I’objet de travaux
d’Alan Beardon et Kenneth Stephenson (voir [B-St2]).

Soit S ’ensemble des sommets d’une triangulation ©~ d’un disque topo-
logique. Soient r = (ry)ses €t r' = (r))ses € R*) et @,, O, les variétés
hyperboliques a courbure — 1 a singularités coniques définies comme
précédemment a partir de &, r et r’.

On note C; (resp. C)) le cercle de &, (resp. 7,.) de centre s et de rayon
rs (resp. r7). On suppose que les familles € = {Cs}scset € = {C.}; s sont
des empilements de cercles, c’est-a-dire que 72, et @, sont immergées
isométriquement dans le disque de Poincaré. Rappelons que € et ¥’ ne
sont pas supposés plonges (comparer a [B-St2]). )

On a la



EMPILEMENTS DE CERCLES 135

PROPOSITION (Lemme de Schwarz-Pick discret dans [B-St2]).

7

i) (monotonie). Si ry<r. pour tout sommet frontiere S, alors

! pour tout sommet intérieur s. De plus, si 15 = rs’0 pour un

sommet intérieur s, alors Vse€S,rg=r.;

re S r

ii) (lemme de Schwarz discret). Si ' est un empilement d’Andreev

’

(ie. rl= 4o pour se€B) alors ry<r,,VseS;

S
iii) (lemme de Pick discret). Si ¥’ est un empilement d’Andreev
alors la distance entre deux sommets s, et s, dans O, est inférieure
a la distance entre les deux sommets correspondants dans O, .

Preuve de la proposition. Prouvons le point i). On réalise la variété
Z,, comme le temps 1 d’une déformation {@,(¢); € [0,1]} de la
variété @, comme ci-avant, a ceci prés que les rayons frontiéres de @, ()
sont définis par

us (1) = U(rs(2)) = (L = )P (rs) + 1¥(ry) .

Pour tout ¢, il existe un opérateur de Schrodinger discret A + V' sur &'
(Ie 1-squelette de @) tel que:

{Afz;(r) + Via(t) =0
us(t) = P(r) — ¥(r;) siseB.

Comme ¥ est décroissante, on a u,(¢) < 0, Vs € B. D’aprés le principe du
maximum pour les opérateurs de Schrodinger on a également u,(¢) <O
pour tout sommet intérieur s, donc W(r;) < W(ry) donc r. > r; pour ces
sommets. De plus, r;y=r; pour un sommet intérieur s, implique
us, (1) = 0, V¢ € [0, 1] donc, d’aprés le méme lemme, w,(¢) = 0, V£, Vs € S
et donc ry=r., Vs e S.

Les points ii) et iii) résultent de (i). [

IV. ESTIMATIONS A PRIORI DES RAYONS

Soit K un compact d’intérieur non vide contenu dans %, et SX ’ensemble
des sommets de @, contenus dans K. On~note re = (r;)ses, la collection

des rayons de I’empilement d’Andreev 27°.. Le but de cette section est
de démontrer la
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