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SYSTEMS OF CURVES
ON A CLOSED ORIENTABLE SURFACE

by Allan L. EDMONDS

1. INTRODUCTION

It is well-known that a nontrivial one-dimensional homology class on a
closed orientable surface F is represented by a simple closed curve in F if
and only if it is primitive, i.e., indivisible. See Myerson [1976], Bennequin
[1977], and Meeks-Patrusky [1978]. (There is also a partial result in Kaneko-
Aoki-Kobayashi [1963].) Here we study the more general question of when
a collection of pairwise distinct homology classes is represented by a set of
corresponding pairwise disjoint simple closed curves. We first introduce the
following necessary conditions.

THEOREM 1. Let F be a closed orientable surface and let S C H|(F) be
a set of pairwise distinct nonzero homology classes. If S is represented by
a corresponding set of pairwise disjoint simple closed curves in F then the
following three conditions are satisfied :

1. INTERSECTION CONDITION. The intersection pairing of F vanishes on S.

2. SUMMAND CONDITION. Every subset T of S spans a direct summand
span T of H(F).

3. S1ZE CONDITION. For every subset T of S of more than one element
card T < 3 rank span T — 3.

Here we say that two homology classes « and [ are distinct if o # f3
and o # —f. Although linear algebraic in nature, the Summand Condition
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312 A.L. EDMONDS

and Size Condition can be a little tricky to check in specific cases. None of
these three conditions follows from the others in general.

We then investigate the attractive conjecture that these natural necessary
conditions are in fact sufficient. In this direction we begin with the case of
independent homology classes.

THEOREM 2. Let F be a closed orientable surface and let S C H{(F) be
a set of pairwise distinct, independent, and indivisible homology classes. Then
S is represented by a corresponding set of pairwise disjoint simple closed

curves in F if and only if the Intersection Condition holds and S spans a
summand of H(F).

Here 1s a simple interpretation of the Theorem 2 in the case of just two
homology classes, which is the case with which the present investigation
started.

COROLLARY. Let F be a closed orientable surface of genus g > 2 and
let ay,ap € Hi(F) be two distinct homology classes. Then o« and o, are
represented by disjoint simple closed curves in F if and only if oy and oy
are indivisible, o -y =0, and «y is indivisible in H{(F)/(ay).)

Here are some simple interpretations of these basic results. Let

al;ﬁlaa%ﬁb ne s aagaﬁg

denote a standard symplectic basis for the homology of F. In particular,
this means that these homology classes are represented by simple closed
curves

A1,B1,Ay,B,, ... Ay, By

in F such that the A; are pairwise disjoint, the B; are pairwise dis-
joint, and if A;NB; # &, then i = j and A; N B; = a single point of
transverse intersection. Then the corollary says that a; and 2a; 4+ oy are
represented by disjoint simple closed curves, as one can easily check by
hand, drawing suitable pictures. On the other hand, «; and o + 2a, are
not so represented. Note further that one can represent the three classes
oy, oy, and o) + ay by disjoint simple closed curves, by explicitly drawing
the curves. By Theorem 1, no more than 3 such classes can be so represented
on a surface of genus 2. On a surface of genus 3 one can easily construct 6
pairwise disjoint simple closed curves representing distinct homology classes.
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Again, Theorem 1 implies that on a surface of genus 3 one cannot realize
7 distinct classes this way. And so on. More subtle examples will be discussed
later.

To consider the more general cases of not-necessarily independent homol-
ogy classes we introduce the following terminology. Define the rank of S,
rank S, to be the rank of the integral span of S in H; (F). And define the
excess of S, excess S, to be card S—rank S. Through a fairly painstaking and
increasingly subtle analysis we are able to prove sufficiency of the conditions
above when either the excess or rank is not too big.

THEOREM 3. Let F be a closed orientable surface and let S C H((F) be
a set of pairwise distinct nonzero homology classes satisfying the Intersection
Condition, Summand Condition, and Size Condition. Then S is represented
by corresponding pairwise disjoint simple closed curves in F provided that
either excess S <3 or rank S <4.

The increasing difficulties encountered while attempting to extend the result
of Theorem 3 eventually led to a family of counterexamples as described in
the following result.

THEOREM 4. Let F be a closed orientable surface of genus at least 5.
Then there is a family S C Hi(F) of 9 pairwise distinct nonzero homology
classes satisfying the Intersection Condition, Summand Condition, and Size
Condition and having excess 4 and rank S that is not representable by a
corresponding family of pairwise disjoint simple closed curves in F.

In particular Theorem 4 destroys all sorts of natural inductive approaches
to proving realizability of families of homology classes by pairwise disjoint
simple closed curves. We include in Section 7 of this paper some additional
examples that illustrate the difficulties in proving realizability, including an
example of realizable homology classes such that there is a realization of all
but one of them that cannot be extended to a realization of the whole family.

A natural hope would be that perhaps the necessary conditions in Theorem 1
are at least sufficient after suitable stabilization or connected sum with a
suitable number of tori. But this turns out not to be the case.
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THEOREM 5. Let F be a closed orientable surface and let S C H{(F) be
a set of pairwise distinct nonzero homology classes satisfying the Intersection
Condition, Summand Condition, and Size Condition. Suppose that the corre-
sponding set of homology classes in F#F\ is represented by corresponding
pairwise disjoint simple closed curves in F#F, for some closed orientable
surface Fi. Then S is represented by corresponding pairwise disjoint simple
closed curves in F.

The analysis in Theorems 3 and 4 is based upon realizing a maximal
subcollection of independent classes by simple closed curves and then cutting
open the given surface to form a surface with boundary. This surface can
effectively be viewed as being planar. Then the problem of realizing any
remaining classes is reduced to lifting the classes to homology classes in
the punctured surface (which are not uniquely defined) and realizing them
there. Thus we also include a preliminary step in which we give a complete
analysis of the corresponding but much easier problem of realizing a family
of homology classes in a compact planar surface by pairwise disjoint simple
closed curves. One attractive statement in this context is that a family of
homology classes in a planar surface is realizable by a corresponding family
of pairwise disjoint simple closed curves if and only if each subcollection
of two elements is so realizable. The analogue of this statement for closed
surfaces 1s false.

An important consequence of this analysis of planar surfaces is the
following result.

THEOREM 6. Let F be a closed orientable surface and let S C H,(F) be
a set of pairwise distinct nonzero homology classes satisfying the Intersection
Condition, Summand Condition, and Size Condition. Then there is a finite
(but “exponential”) algorithm for deciding whether S can be represented by
corresponding pairwise disjoint simple closed curves in F.

We have written computer programs in Maple that in principle can carry
out such an algorithm. Unfortunately, at the time of this writing the first
interesting cases are too large for the current version of the programs to be
effective. (The program did assist in enumerating the cases where rank § = 4
that were analyzed in Theorem 3.)

It is elementary to see that any family of homotopically nontrivial and
nonparallel pairwise disjoint simple closed curves in a surface of genus g
can be extended to a maximal family of 3g — 3 such simple closed curves.
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We conclude by proving an analogue of this for homologically nontrivial and
distinct curves.

THEOREM 7. Let F be a closed orientable surface of genus g > 2, and let
S C H,(F) be a set of pairwise distinct nonzero homology classes represented
by a corresponding family of pairwise disjoint simple closed curves in F.
Then this family of simple closed curves can be extended to a family of 3g—3
pairwise disjoint simple closed curves in F representing nontrivial, pairwise
distinct homology classes in H|(F).

Here is a summary of the contents of the rest of the paper: Section 2
contains the proof of Theorem 1 deriving the fundamental necessary conditions.
Sections 3 and 4 deal with the cases of one homology class and with
independent homology classes, and provide two proofs of Theorem 2. In
Section 5 we give an analysis of simple closed curves on a planar surface.
In Section 6 there is the proof of the main positive realizability statement,
Theorem 3, ending with a discussion of Theorem 6. In Section 7 we present
several examples that illustrate some of the subtleties involved in finding
a more complete and definitive result than that given here, including the
nonrealizability result stated as Theorem 4. Finally in Section 8 we give the
proofs of Theorem 5 and 7.

The author acknowledges helpful conversations with Chuck Livingston,
especially in the early stages of this work, useful comments from Michel
Kervaire, and the hospitality of the Max Planck Institut fiir Mathematik in
Bonn, where some of the work was completed.

2. NECESSARY CONDITIONS

It is quite clear that the Intersection Condition must hold, since the
intersection number of two disjoint 1-cycles is necessarily 0. The necessity of
the Summand Condition follows immediately from the following lemma.

LEMMA 2.1.  Let F be a closed orientable surface of genus g > 1 and
let S C H\(F) be a set of pairwise distinct homology classes represented by
a corresponding set of pairwise disjoint simple closed curves in F. Then the
image of S spans a direct summand of H;(F).
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Proof. Let A C F be the union of the simple closed curves representing

the elements of S in H;(F). Consider the long exact homology sequence of
the pair (F,A).

- — Hy(A) — Hi(F) — H(F,A) —

Now the linear span of S in H;(F) is identified with the image of H;(A)
in H{(F). But H(F,A) is free (by Poincaré Duality), so we see that the
image of Hj(A) is a direct summand, as required.

The following result gives the Size Condition. The construction described
in the proof below will be important, as it describes an effective way to
approach the problem of explicitly realizing a system of pairwise disjoint
curves.

LEMMA 2.2. Let F be a closed orientable surface of genus g > 1,
let S C Hi(F) be a set of pairwise distinct homology classes represented
by a corresponding set of pairwise disjoint simple closed curves in F, and
let n = rank span S. Then card § < max{3n—3,1}.

Proof. 1If n =1, then it follows from Lemma 2.1 that § must consist
of a single element, and the desired inequality trivially holds. Henceforth we
assume that n > 1. The proof in this case will amount to cutting the surface
up into pieces along the given simple closed curves and using the pieces to
calculate the euler characteristic of the surface. It is easy to see that g > n.
We will first assume that ¢ = n. At the end we will indicate how to modify
the proof to handle the case g > n.

Let aq,...,a, € § form a basis for span S and let Ay,...,A, be the
corresponding disjoint simple closed curves in F. Let v,...,v, € S be
the remaining elements of S and Ci,...,C, be the corresponding disjoint

simple closed curves in F. Let F denote the surface F cut open along the
A;. Then F is a connected, orientable surface and has 2n boundary curves
and genus g —n = 0. Note that X(f’) = x(F) by the sum formula for euler
characteristics. In F each of the m = card § — n curves C; 1s homologous to
a sum of boundary curves, with multlphcmes +1, since C; does not separate
F', but does separate F.Now F =F — UC; still has genus 0 and consists
of m + 1 planar components X,. Again note that x(F) = X(F ). No Xy can
be a disk, since otherwise its boundary curve would be nullhomologous in
F. Similarly, no X, can be an annulus, since otherwise, the two boundary
curves, belonging to the original collection of curves would represent the same
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homology class in F, up to sign. It follows, therefore, from the classification
of surfaces, that each X, has Euler characteristic < —1. Therefore, when
n>1and n=g,

X(F) = x(F)=2=2n=) x(Xp) < (card S —n+1)(~1)

or equivalently card § < 3n — 3, as required.

It remains to consider the case when g > n > 1. In this case, we first
proceed as before, cutting open along the A;, obtaining a connected surface
F of genus g —n and with 2n boundary curves, containing the m curves G,
each of which is homologous to a sum of boundary curves in F. Now each
of the C; separates F, and we may further cut open along the C;, obtaining
a surface with m 4+ 1 components and total genus g —n. It follows that there
are additional pairwise disjoint simple closed curves E;, k=1,...,9—n, In
F, reducing F to a planar surface of genus O when we cut open along the
E; and cap off the resulting 2(g — n) boundary curves with disks. Call this
latter surface F, topologically a 2-sphere with 2n holes. Now the C; separate
F into m+ 1 = card S —n+ 1 planar components X,. As before, each X,
has Euler characteristic < —1. Therefore, again,

Y(F)=2-2n= ZX(Xg) < (card S —n+ 1)(=1)

or equivalently card S < 3n — 3, as required.

3. SUFFICIENCY FOR A SINGLE HOMOLOGY CLASS

Here we collect some basic information about the embedding of a single
simple closed curve in a surface, and offer an alternative, elementary proof
of Theorem 2 for the well-known case of a single homology class.

LEMMA 3.1. A nonzero homology class o € H(F) is primitive if and
only if there exists v € H\(F) such that v-o = 1.

Proof. A nonzero element of a finitely generated free abelian group 1s
primitive if and only if it is part of a basis if and only if there is a Z-valued
homomorphism that takes the value 1 on it. Recall that taking intersection
numbers of 1-cycles defines a skew symmetric bilinear form on H(F). The
content of Poincaré Duality in this situation is that this bilinear form is
nonsingular, that is, the adjoint homomorphism H,(F) — Hom (H1 (F),Z) 1S
an isomorphism. The lemma then follows.
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LEMMA 3.2. Any homology class o € H{(F) can be represented by an
immersed, oriented closed curve on F and also by an embedded, oriented
1 -submanifold.

Proof. The Hurewicz homomorphism 7(F) — H;(F) is onto. Compare
W. Massey [1980], Chapter III, Section 7, for example. Any map S I' 5 F can
be approximated by an immersion, with only isolated double points. One can
surger any double points, that is, one can replace any pair of small oriented
arcs having a single transverse intersection with a pair of parallel oriented
arcs with the same end points and lying within a regular neighborhood of the
intersecting arcs. In this way one creates a disjoint union of oriented simple
closed curves representing the same homology class.

PROPOSITION 3.3. A homology class « in H,(F) can be represented by
a simple closed curve on F if and only if « is primitive.

Proof. We sketch a 2-dimensional version of the argument of Bennequin
[1977]. If a simple closed curve represents a nonzero homology class, then
it is nonseparating. It follows that there is a simple closed curve that meets
it transversely in a single point. This implies indivisibility, by the homology
invariance of intersection numbers.

For the converse, we may assume that « is nonzero. We begin by
representing « by a disjoint union A of oriented simple closed curves, as in
Lemma 3.2. We shall assume that A contains the smallest possible number
of components and show that this number can be reduced unless it is 1 or it
is equal to the divisibility of «.

Cut open F along A-that is, remove the interior of a small tubular
neighborhood of A. The boundary of the cut open surface F consists of two
copies A;” and A; of each component A; of A, each of which we orient
as the boundary of the orientable surface F. The positive components A:
have the same orientation as A;, while the negative components A;” have the
opposite orientation.

If some component R of F contains in its boundary two positive curves
A and A;L (or two negative curves), then they can be banded together in an
orientable way using a band in R. That is, one chooses an embedded arc ¢
in R meeting A;" and AJ-Jr in its two end points only. One then replaces A;
and A; with the single simple closed curve obtained by removing small arcs
in A; and A; containing the end points of 4 and inserting in their place two
embedded arcs parallel to 6. This would reduce the number of components -
of A. If some component R has boundary just A" and A; for some A;,
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then we can conclude that A is connected and we are done. If some R has
more than two boundary components, then it contains two positive curves or
two negative curves, and we can proceed as above to reduce the number of
components of A. R

It remains to consider the case where each component R, of F has exactly
two boundary components of the form A" and A;", where A; and A; are
distinct components of A. In this case we conclude that we can arrange the
components of A in a sequence Aj,A,,...,A,, so that A; is homologous to
A,, A, is homologous to As,...,A, is homologous to A;. In this case, then,
the number n of components is exactly the divisibility of «.

4. SUFFICIENCY FOR INDEPENDENT HOMOLOGY CLASSES

In this section we complete the proof of Theorem 2, dealing with the case
of a set of homology classes consisting of independent elements.

LEMMA 4.1. Let F be a closed orientable surface and let ay,...,a,
€ H\(F) be independent homology classes that span a summand of Hi(F)
on which the intersection pairing of F vanishes. Then there exists v € Hy(F)
such that v-a, =1 and v-o; =0 for i < n.

Proof. This is a consequence of Poincaré Duality.

PROPOSITION 4.2. Let F be a closed orientable surface and let o, . . ., o
€ H|(F) be independent homology classes that span a summand of H,(F)
on which the intersection pairing of F vanishes. Then there exist pairwise

disjoint simple closed curves Ay,...,A, in F representing the homology
classes «q, ..., .

Proof. The proof will proceed by induction on n. The case n = 1 is
given by Proposition 3.3.

Now inductively consider the case of n > 1 homology classes. By
Proposition 3.3 we can find a simple closed curve A, in F representing
;. We claim that there is a simple closed curve B, in F representing a
homology class (, such that B, meets A, in exactly one point and such that
[B,]-co; =0 for i <n. By Lemma 4.1 there is a homology class v, € H;(F)
such that «; -7, = 6;,,. We begin by representing vy, by a simple closed curve
B transverse to A,. By tubing together neighboring pairs of intersection of
B with A, of opposite sign we can transform B into a disjoint union B’
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of simple closed curves meeting A, in exactly one point. Now we can band
together the components of B’, using bands in the complement of A, to
create a closed curve B” representing 7, and meeting A, in exactly one
point. But B” may now have self-intersections. We may then eliminate the
self-intersections by sliding segments of B” over A,. This creates a simple
closed curve B, meeting A, in exactly one point, and representing a homology
class of the form [, = v, + ka,, which proves the claim.

Now the union of the two curves A, and B, has a small neighborhood N
of the form of a once punctured torus. Let F,, denote the result of removing
N and replacing it with a disk D. Then F,, — D =F — N C F and inclusion
identifies H{(F,) with the orthogonal complement of «, and (3, in H{(F).
Thus the homology classes «j,..., a,_; determine well-defined classes in
H(F,), which we continue to call by the same names. By induction there are
pairwise disjoint simple closed curves Aj,...,A,—; in F, representing the
homology classes «j,...,a,_1. Then these curves also live in F', determining
the same homology classes, and are disjoint from the curve A, . This completes
the proof.

Here is a sketch of a standard but somewhat more learned proof of
Proposition 4.2, suggested by M. Kervaire: Any basis for a self-annihilating
summand of a skew-symmetric inner product space over Z can be extended
to be part of a symplectic basis. Any two symplectic bases are related by
an isometry of the inner product space. Half of a fixed standard symplectic
basis is clearly represented by standard pairwise disjoint simple closed curves
in a standard model of the surface. And any isometry is induced by a
homeomorphism of the surface, so that the standard curves are taken to
the desired curves. To see that any isometry is induced by a homeomorphism
one can argue that the symplectic group is generated by certain elementary
automorphisms and that these elementary automorphisms are induced by Dehn
twist homeomorphisms around standard curves on the surface.

5. DISJOINT SIMPLE CLOSED CURVES ON A PLANAR SURFACE

Subsequent proofs of realizability of non-independent homology classes
will proceed by cutting the surface along curves representing a basis for
homology until it becomes a punctured 2-sphere and then representing the
remaining homology classes by disjoint curves on this planar surface. We
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therefore first investigate directly the case of homology classes in a planar
surface.

In this section G will denote a compact orientable planar surface with
with m oriented boundary components By, ...,B,. By the classification of
surfaces G can be thought of as being obtained from the 2-sphere by removing
the interiors of m disjoint disks. Now H;(G) is freely generated by the
homology classes [B;], subject to the single relation > [Bil=0.

By the Schonflies Theorem any simply closed curve C in G divides G
into 2 parts, showing that any such C is homologous to a sum of boundary
curves, up to global sign. That is, we have half of the following lemma.

LEMMA 5.1. A homology class v = > ¢&;i[B;] € Hi(G) is represented by
a simple closed curve if and only if ¢; € {0,+1} for all i, or g € {0,—1}
for all i.

Proof. It remains to show that a given v = > &l[B;] € Hi(G), with
g; € {0,1} is represented by a simple closed curve. One can organize this
process by choosing a tree in G meeting only the boundary curves B; with
coefficient ; = 1, and then only in one point for each such B;. The desired
simple closed curve can be chosen to be the interior boundary of a small
regular neighborhood of the union of the tree and the boundary curves it
meets.

Note, for example, that [B;]+4[B>] is represented by a simple closed curve,
while [B;] — [B>] and [B;] + 2[B;] are not.

We call a homology class, as in the statement of Lemma 5.1 a basic class.
Notice that if ~ is basic, then so is —v. Notice also that a nonzero basic
class has a unique representation with all nonnegative coefficients. There are
2™ — 1 nonzero basic classes, then, that we want to consider.

We now consider a family of homology classes vi,...,% € Hi(G) and
ask when they can be represented by pairwise disjoint simple closed curves
in G. Using the above lemma together with the fundamental defining relation
for the homology of G we may as well assume that each

vi=Y eylB]
where each ¢; € {0, 1}. Now all intersection numbers in G necessarily vanish,
so there 1s no analogue of the Intersection Condition from Theorem 1.

If @ =) ¢&[B] € Hi(G) then we define the partition of «, denoted
part a = {C, D}, to be the partition of the set {[B;]:i=1,...,n} consisting
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of the set C of [B;] that have nonzero coefficients ¢; and its complement D.
Note that since the representation of « as such a linear combination is not
unique, it is necessary to include discussion of the complementary sum. Note
also that @ and —a have the same partitions.

PROPOSITION 5.2. Two basic classes oy, oy € H1(G), with corresponding
partitions part o; = {C;,D;}, are represented by two disjoint simple closed
curves in G if and only if oy and oy are individually represented by simple
closed curves and C; C Cy or C; C D».

Proof sketch. The point is that the tree used to determine a simple closed
curve A; for o does not separate G. Therefore, if the support of «a;, or its
complement, is disjoint from the support of «;, then one can find a tree for
ap 1n the complement of the tree for «; and the boundary curves it touches.

The proof of Proposition 5.2, extends inductively to prove the following
result.

PROPOSITION 5.3. A set of homology classes S = {ay,...,o} C Hi(G),
with corresponding partitions part(cy;) = {C;,D;}, is represented by a
corresponding set of pairwise disjoint simple closed curves in G if and
only if each «; is individually represented by a simple closed curve and for
each i,j C; C C;j or C; C D;.

COROLLARY 5.4. A set S of homology classes in H;(G) is represented by
pairwise disjoint simple closed curves in G if and only if any two elements
of S are represented by disjoint simple closed curves in G.

The analogue of the preceding result will be seen to fail for closed surfaces.

COROLLARY 5.5. A set S of pairwise distinct homology classes in H{(G)
that is represented by pairwise disjoint simple closed curves in G has at most
2m — 3 elements, including the boundary curves.

Proof. 1t suffices to assume that S contains no classes homologous to
boundary curves and to show that card § <m —3. Let k =card § and let A
denote the union of a set of disjoint simple closed curves in G representing
the elements of S. The realization of each element of S divides G into 2 parts.
The k elements then divide G into k+ 1 parts X,. Since the classes in S are
not parallel to boundary classes, the components X, of G cut open along the
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simple closed curves representing the elements of S all have negative Euler
characteristic. Therefore 2 —m = x(G) = >, x(X¢) < (k+ (—1). It follows
that &k < m — 3, as required.

In general there are many apparently different ways to realize realizable
homology classes. But up to homeomorphism we have the following uniqueness
result.

THEOREM 5.6. Suppose that a set of homology classes S = {a1,...,ax} C
H,(G) is represented by two different families Ay, As, ..., Ay and A}, A5, ... LA
of pairwise disjoint simple closed curves in the planar surface G. Then there
is a homeomorphism f : G — G inducing the identity on homology such that

fA) =Al for j=1,... k.

We note that the analogue of Theorem 5.6 for closed surfaces is false. We
also note that this result shows that in the process of realizing a realizable
family of homology classes one-by-one, one cannot get “stuck”, which can in
fact happen in the case of closed surfaces.

Proof of Theorem 5.6. The overall argument will be by induction on the
the number k of homology classes in question. We can assume that G has at
least 3 boundary curves. Then any homeomorphism inducing the identity on
homology will map each boundary component into itself. It follows that we
can assume that the set § of homology classes contains no boundary classes.
First consider the case k = 1 of just one non-boundary class «; and two
different simple closed curves A; and A realizing it. Note that the same
boundary curves appear on corresponding sides of A; and of A}. It follows
easily from the Schonflies Theorem that there is a homeomorphism moving
A; onto A} and preserving the corresponding sides. One can then arrange
that this homeomorphism induce the identity on the boundary by composing
with a homeomorphism that appropriately permutes the boundary curves while
leaving A/ invariant. To argue this in a little more detail, let G denote the
2-sphere obtained by collapsing all the boundary curves to single points. The
the usual Schonflies Theorem shows that there is a homeomorphism of G
mapping A; onto A]. By composing with a homeomorphism that exchanges
the two sides of A} if necessary, we can assume that this homeomorphism
maps the complementary domains of A; to the corresponding complementary
domains of A}. Then homogeneity shows that one can further arrange that
this homeomorphism can be arranged to map each ideal point to itself. One
can then “blow up” the ideal points to the original boundary curves.



324 A.L. EDMONDS

Now, proceeding inductively, consider the case of k > 1 homology classes.
One of these homology classes, say «y, has a minimal partition C, Dy, in
the sense that C; contains no other C; or D; for j< k. By the preceding
argument we may assume that Ay = A;. One side of A; contains no other
simple closed curves A; or A;. Excise this side to obtain a new planar surface
H containing the remaining simple closed curves. By induction there is a
homeomorphism 4 of H moving A; onto AJ’- for 1 <j<k—1. and mapping
each boundary curve into itself. We can then reinsert the excised domain to
complete the argument.

The results of this section, with the exception of Theorem 5.6 above, hold
mutatis mutandi for compact non-planar surfaces G with boundary, provided
one only considers homology classes given as linear combinations of the
classes represented by the boundary curves. Each such simple closed curve in
the interior of G would separate G. Uniqueness, however, is obstructed by
needing to know the genus of each complementary domain.

6. SUFFICIENCY IN THEOREM 3

Let S C H{(F) denote a finite set of distinct homology classes satisfying
the Intersection Condition, the Summand Condition, and the Size Condition
of Theorem 1, which we wish to represent by pairwise disjoint simple closed
curves. Suppose that the linear span of S has rank n and extract from S n
elements «j,...,q, that form a basis for this span. Now each element -y; in
the remaining subset 7 of S can be expressed as a linear combination

Vi = E €ij -
J
We refer to the ~; as “composite classes.”

LEMMA 6.1. Each coefficient ¢;; in the linear combination ~y; = Zj Eij O
is 1, —1, or O.

Proof. To see this, consider the span of the set consisting of any one
~; together with all a4, k # j. Elementary change of basis operations show
that this span is the same as the span of ¢;«; and the o, k # j. By the
Summand Condition, this span must be a summand, and it therefore follows
that ;; = &1 or 0.
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If card T = m, then the collection of all «; € T can be described by an m
by n matrix M of 0’s, 1’s, and —1’s. Then the proof of Lemma 6.1 extends
to give the following consequence of the Summand Condition.

LEMMA 6.2. Each square submatrix N of M has |detN | < 1.

Proof Let N be a k x k submatrix. Up to relabeling we may
assume that N consists of the ¢;, 1 < i,j < k. Now consider the span

of Yi,..-, Yk, Qka1s- - -5 0. On the one hand, the Summand Condition says
that this span must be a direct summand. On the other hand, the span 18
the same as the span of J1,..., 5k, Qktl,- .-, Qn, Where 53 = > . €504 18
the projection of ~y; into the span of «j,...,ar. But this span is clearly
the direct sum of the span of #i,...,% and of ag41,...,q,. It follows
that the span of #,...,%; is a direct summand of the span of «y,..., .
Standard matrix theory then implies that the determinant of the matrix of
coefficients of #p,...,9 is =1 or 0. But this matrix is the upper left
matrix N.

In what follows here we will assume that F has genus n. By this we
mean that there is a corresponding set of homology classes in a surface of
genus n, and that we may view the given surface as being obtained from the
genus n surface by attaching handles. It is clear that if the homology classes
can be realized in the surface of genus n, then they can be realized in the
given surface. The converse of this statement is also true, but less obvious.
We will prove it in a subsequent section.

We may also assume that we have already represented elements «y, ..., o,
by disjoint simple closed curves elements Ay, ...,A,, by Proposition 4.2. We
attempt to represent the remaining classes in 7, the complement of ay,...,q,

in S. Let F denote F cut open along the A;. Then Fisa?2- sphere with 2n
holes, with orientable boundary consisting of one copy A;" of each A; and
one copy A;” of each A; with its orientation reversed.

By the results in Section 5 we understand completely when a family of
homology classes in F can be realized by pairwise disjoint simple closed
curves. We need to see how to lift the classes in T to realizable class in F.
Now H, (1?) is generated by the classes [A;"] and [A;"] subject to the single
relation Y, ([A] + [A;]) = 0. The natural inclusion of F in F induces a
homomorphism H, (1?7) — H(F) where [Af] — [A;] and [A7] — —[A;]. This
homomorphism maps surjectively onto the subgroup generated by Ay, ..., A,.
Its kernel is generated by terms of the form [A7]+[A;] subject to the single
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global relation Zi([A,?L] + [A7 ]) = 0. We will slightly abuse notation and
suppress the square brackets from such formulas below.

LEMMA 6.3. Any single element v, € T can be realized by a simple
closed curve in F.

Proof. Write 1 = ) . €j;a; as above, with g5; € {0, £1}. By replacing
some of the «; with —o; as necessary, we can assume that v, = Z;c:l Q.
“ AT in F is then represented

The corresponding homology class 4 = =14,

by a simple closed curve, as required.

LEMMA 6.4. If o and oy both have nonzero coefficients in the expansions
of both of 1 and -y, then either €; = €;; and €1, = €y Or €1j = —E2y;
and ey, = —ex. That is, the coefficients either agree or disagree.

Proof. If not, the matrix M representing the ~; has a 2 by 2 submatrix

of the form
1 1
1 -1

up to multiplying rows and/or columns by —1, contradicting the matrix
interpretation of the Summand Condition as given in Lemma 6.2.

For +; € T define its support (with respect to {ay,...,a,}) to be the set
of «; with nonzero coefficient in the expression ~y; = ZJ. g;ja;. Note that up
to relabeling there are just three ways for the supports of v; and v, in T
to relate to one another. The two classes may have nested supports, disjoint
supports, or properly overlapping supports.

LEMMA 6.5. Any two distinct elements vy,v, € T can be realized by
disjoint simple closed curves in F. '

Proof. There are three cases to consider, organized by the relative
placement of the supports. Without loss of generality we can assume that
card supp y; > card supp 7». Then either

(1) supp 2 C supp 71 or
(2) supp yiNsupp 2 =& or
(3) supp 1 Nsupp v2 # & and suppyi N supp v, 7 supp 7z.

As in the proof of Lemma 6.3 we may assume that v; = ZJI.‘ZI Q;.
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‘

In case (1) we may, by Lemma 6.4, assume that -, has the form Zj:l o%
for some ¢ < k. Then the two corresponding classes 71 = Z]I.;lAj*' and
= Zle A;r can be realized disjointly in F as required, by Proposition 5.2.

In case (2) we may assume that v, has the form Zf: y41 @ for some L>k.

Then the two corresponding classes 7 = Zjlle AJ-Jr and 7, = Ef:k 41 A;L can
be realized disjointly in F as required.
In case (3) we may assume, again by Lemma 6.4, that -+, has the form

ZJS-:,. «; for some r < k and s > k. Then the two corresponding classes

N = Z]]le Aj+ and v, = Z;:r A" can be realized disjointly in F as required.

PROPOSITION 6.6. Any three distinct elements vy, Y2, vz in T can be
realized by disjoint simple closed curves in F.

Proof. Once again we organize the analysis according to the relative
positions of the supports of the three homology classes. There are several
cases to consider. In each of several cases we shall normalize the expressions
for the <; in terms of the ;. The operations we will use are permutation
of the -;, permutation of the «;, changing the sign of one or more -;, and
changing the sign of one or more o;.

Suppose that the support of one class is contained in the support of another
class. Without loss of generality we may assume that

k £
Y = Z Q; and Yo = Z ij for some /¢ <k.
j=1 j=1

Now the signs of all coefficients of ~3; involved in +; may be assumed to be
negative, by Lemma 6.4. So we may assume that

v
V3= E —Qy
Jj=u

Then the three preferred lifts

k 14 v
’YAIZZAPL : %ZZA]L , and %:ZAJ.‘
=1 Jj=1

J=u

can clearly be realized disjointly in F . Henceforth we may assume that no one

of the three given homology classes has its support contained in the support
of one of the others.
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If the underlying support of one of the 3 classes, say of -3, is disjoint
from the supports of both of the other two, then this is easy. Realize 43
and 7, as above; then realize the preferred lift 43 of -3, which has support
disjoint from those of 4; and +;.

Suppose now that two classes have disjoint support, but that no homology
class has support disjoint from the supports of both of the other two. Without
loss of generality we may assume that

k ¢
P = Zozj and v = Z Q
j=1

j=k+1
for some ¢ > k+ 1. Now -3 involves some, but not all, of the support
of =, some, but not all, of the support of <, and, perhaps, some terms
not involved in either of 7, or 7,. After permuting basis elements we have
V3 = Z;:r€3jaj+z;l:£+1€3jC¥j, where 2 <r<k—1, k+1<s</{-1.
Now the Summand Condition implies that all e3;, r <j < k, have the same
sign; and all e3;, k+1 <j <, have the same sign. By changing the global
sign of -3 if necessary we may assume that e3; = —1 for r < j < k. Further,
by changing the sign of «;, i > £ as needed we may assume that €3; < 0
for i > £. Thus at this point we have arranged that

k s t
’73:—ZQJZEZC¥J"—ZCKJ'
j=r

j=k+1 Jj=£+1
where 2 <r<k—-1, k+1<s</¥/—1,and /+1<1t<n, and the third
sum might not actually appear at all. If the “—" sign prevails in the formula

for ~s, then the preferred lifts of ~;, 72, and =3 are disjointly realizable in
F as required. On the other hand, if the “4” sign prevails we can reduce
to the previous case by first replacing oy 1, ...,y with their negatives, and
then replacing -, with its negative.

Now we may suppose for the rest of the argument that no two classes
have disjoint support, and that no class has support contained in the support
of one of the other two classes.

For the penultimate case suppose that the intersection of all three supports
is empty. We divide the supports of the -y; three pieces: S;; = supp-y; Nsuppy;
and T; = supp ;—supp y;Usupp v, where {i,j,k} = {1,2,3}. In what follows
we will, for notational simplicity, sometimes identify «; with its index j. Then,
without loss of generality, after changing the signs of various «; as necessary,

we can assume that
= Zai+z&i+z&i-

I€S) €S €T
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Then, replacing «y, by its negative if necessary, and changing the sign of
a;, i € S3 UT, as necessary, and invoking the 2 X 2 Summand Condition,

we can assume that
“/zz—zai—zai-z@i-

IES €873 i€l

Similarly, we can arrange that

D ILE LTS
IE€S13 €S €T3
Now the 3 x 3 Summand Condition tells us that the + sign must prevail

in the expansion of 3. For otherwise the matrix M would contain a 3 X 3

submatrix of the form
1 1 0

-1 0 -1

0o -1 -1
which has determinant —2. Now with all these normalizations, the preferred
lifts of ~;, 72, and 3 are disjointly realizable in F as required.

Finally, at last, we have the case that the intersection of all three supports
is nonempty but that no support set is contained in one of the other supports.
Let §; =suppy;, S; =S5NS;, and Si23 =51 N5 NS # @. Now as always
we can assume one of our homology classes, say <, has all nonnegative
coefficients, i.e., y; = ZjESI aj. Next we can assume by the 2 by 2 Summand
Condition that -, has positive coefficients on Sy, and of course that it has
positive coefficients on S — S12. In particular, then, we have v, = Zje 5, O
Since Sip3 # @, all coefficients of elements of S3 M (S; US,) must have the
same sign, which we may assume is positive. It follows that we may arrange
that v3 = Zje s, @j. In this case the preferred lifts of the +; will not be
disjointly realizable and we have to choose other lifts as follows. For v; we
do use the preferred lift

A=Y

JES)
For ~;, however, we add on to the preferred lift canceling pairs corresponding
to elements of §; — S, and define

EED IR DTS
JES2 JESI =S,
and, finally, for v; we define
= ZA;L + Z (Aj+ +4;7).

JES3 JES|US, -85
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These choices of lifts of the ; to homology classes in F satisfy the conditions
for disjoint realizability given in Section 5. (We emphasize again that the
conditions for realizability in planar surfaces continue to hold for homology
classes in nonplanar compact surfaces with boundary provided the homology
classes in question are all linear combinations of the classes of the boundary
curves.)

The one remaining aspect to consider in the proof of the sufficiency part
of the Theorem 3 is given by the following result.

PROPOSITION 6.7. If rank S < 4, then S can be realized by disjoint simple
closed curves in F.

Proof sketch. We will only outline the proof, which is a tedious case-
by-case check. In light of the preceding results, we may assume that F has
genus 4 and that S consists of «y,...,aq together with 4 or 5 additional
classes ;. We describe the system of ~; by a matrix with 4 or 5 rows and
4 columns, consisting of entries 1, —1, or 0. (Conversely, any such matrix
determines a collection of homology classes which one can try to realize.)
We can normalize each such matrix according to the following principles :
First of all we can arrange that the rows have monotonically nonincreasing
size of support as one goes down the rows. Next, within any collection of
rows with supports of the same size we can assume that the rows appear
in lexicographical ordering according to the alphabet ordering +1, —1, 0.
Next, by changing signs of the elements of § as required we can assume
that the first nonzero element in each row and in each column is +1. A
computer can easily crank out a list of all such matrices in lexicographical
order. (It follows from the Summand Condition that there is at most one
element of length 4 (i.e., involving all 4 classes «;). Similarly, there are at
most 2 elements of length 3. Again this follows from the Summand Condition,
since two elements of length 3 must have two support elements in common
and since the coefficients of the «; appearing in the overlap of the supports
of two classes must all have the same signs. The remaining classes must have
support size 2.) At this point one should check the Summand Condition by
checking that the determinant of every square submatrix is also +1, —1,
or 0 and throw out those that do not meet this condition. Finally, in any
particular case there may be extra symmetries at hand, exchanging pairs of
rows or pairs of columns so as to produce a matrix higher up on our list.
This last step is done by hand. Ultimately in this way we produce a list of |
36 such matrices which one must show are realizable by actually drawing
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an appropriate planar diagram as above. (There is some redundancy in that
some of the 4 by 4 matrices appear as submatrices of 5 by 4 matrices later
in the list.) Although some of the required diagrams were a little difficult to
discover, in the end all 36 were shown to be realizable. As just one example,
here is one of the trickier realizable families :

1 1. 0 O
1 0 1 0
1 0 O 1
o 1 -1 0
o1 0 -1

This corresponds to the family
S = {a, a2, 03, g, ) + 2, 01 + a3, Q1 + Q0 — 03,00 — Q4 f

The following classes on the 4 x 2-punctured sphere lift the five composite
classes :

AT AT AT AT AT + AT AT + AT AT + AT AL +AfF

This collection of classes can be realized by pairwise disjoint simple closed
curves on the punctured sphere, and this realization then descends to give a
realization of the given homology classes.

Discussion of the proof of Theorem 6, an algorithmic solution to the
realizability problem. The results of Section 5 on realizing curves on a
planar surface and of the first part of this Section 6, combine to provide
a finite algorithm for realizing any family of homology classes by pairwise
disjoint simple closed curves. As usual, let S C H;(F) denote a finite set of
distinct homology classes satisfying the Intersection Condition, the Summand
Condition, and the Size Condition of the the Main Theorem, which we wish
to represent by pairwise disjoint simple closed curves. Suppose that the linear
span of § has rank n and extract from § n elements «;,...,q, that form a

basis for this span. Now each element y; in the remaining part of S can be
expressed as a linear combination

i = E €ij &
J

in which we know by Lemma 6.1 that the coefficients satisfy |e;] < 1.
Moreover, we may also assume that we have already represented elements
ap, ..., by disjoint simple closed curves A;, ... , A,, by Proposition 4.2.
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We attempt to represent the remaining classes in 7', the complement of
a,...,0, In S. Let F denote F cut open along the A;. Then F is a 2-
sphere with 2n holes (possibly with some additional handles attached, which
play no role in the present discussion and which can safely be ignored), with
orientable boundary consisting of one copy Al of each A; and one copy
A; of each A; with its orientation reversed. As in Section 5, the relevent
homology B C H| (F) is generated by the homology classes of the boundary
curves. Now the set S of homology classes can be realized by pairwise disjoint
simple closed curves in F' if and only if the classes in 7' can be lifted to a
set T of homology classes in B C H; (F) that can be realized by pairwise
disjoint simple closed curves in F. Now, the classes ~; have infinitely many
pre-images in H, (F), but only finitely many pre-images can be represented by
simple closed curves, since by Lemma 5.1 the coefficients of the classes of
the boundary curves must have absolute value at most 1, and all must have the
same sign. There are only finitely many such lifts of each homology class and
they may all be considered one-by-one for realizability using Proposition 5.3,
which is itself finitely verifiable.

7.  VARIOUS INSTRUCTIVE EXAMPLES

Here we present three interesting examples that point to some of the
difficulties in finding necessary and sufficient conditions for realizability of
a system of homology classes by pairwise disjoint simple closed curves. To
start with we give an example showing that even when a system is realizable
it is possible to get stuck, in the sense that one might realize all but one class
and then have no way to realize the last class so as to be disjoint from the
other curves. In particular, one might have to go back and change the curves
already realized in order to complete the construction.

EXAMPLE 7.1. Non-extendable partial realizations of a realizable family
of homology classes.

Let S = {a,ap, a3, 04,1 + 0,03+, a1 + 0+ a3, +a3+ a4} be a
system of homology classes on a surface of genus 4, in which {a, as, a3, ay}
is part of a standard symplectic basis. One can check that this collection
satisfies all the necessary conditions in the Theorem 1. By Theorem 3, it is
realizable by a system of pairwise disjoint simple closed curves. Explicitly,
we can first realize {a1, s, a3, a4} by standard curves Aj,A;,As, A4 in the
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surface F of genus 4. Letting I denote the result of cutting F open along
the A;, we can then realize the remaining homology classes by lifting them
to H, (f), as follows :

AT AT AT + AL AT + AT +AT A +AT +A]

On the other hand the first three composite classes can also be realized

using the lifts
AT AT AT + AT AT + AT +AT

This realization cannot be extended to a realization of the full collection,
as one can see by case-by-case analysis. We remark that examples like this
show that a strategy of aiming for “maximum disjointness” as one realizes the
various curves will fail in general. One can similarly give simple examples
showing that a strategy of “maximal nestedness” will also fail. For example,
the lifts

AT + AT AT+ AT + A + A + AT +AS AT + A + AT

again realize all but one class and this realization cannot be extended. In
particular, this example also shows that one cannot simply use what one
might call the “preferred” lifts of homology classes into F. That is, one
may actually require extra terms of the form A;" + A;. (See the proof of
Proposition 6.6, for examples.)

EXAMPLE 7.2. The Size Condition does not follow from the Intersection
and Summand Conditions.

Let § = {o,a,03,a4,01 + ap,p + az, a1 + an + 3,01 + au,
a; + ay + og, 1 + ap + o3 + o} be a system of 10 homology classes
on a surface of genus 4, in which {ay, s, 3,4} is part of a standard
symplectic basis, that is, is a basis for a summand of the homology on which
the intersection pairing vanishes. In particular, the Size Condition is not satis-
fied. To check that this collection satisfies the Summand Condition holds we
consider the 6 by 4 matrix whose rows are given by the last 6 “composite”
classes expressed in terms of the first 4 classes :

1 1 0 0
(O 1 1 O\
1 1 1 0
1 0 0 1
1 1 0 1

\1 1 1 1
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By brute force we can show that every square submatrix has determinant
0, 1, or —1, which gives the Summand Condition. Alternatively one can
show directly that the transposed matrix describes 10 realizable homology
classes in a surface of genus 6.

Here 1s an important example that satisfies the Intersection, Summand, and
Size Conditions, but is not realizable.

THEOREM 7.3. Let F be a surface of genus 5 and let

{041,...,045,51,...,55}
be a standard symplectic basis for H(F). Then the set

S=A{al,...,os, ar+m+tas, oy +ay+o3, o+az+ou, az+ou—as)

satisfies the Intersection, Summand and Size Conditions, but cannot be realized
by a corresponding collection of pairwise disjoint simple closed curves.

Proof. Since the intersection pairing of F vanishes on the subgroup of
H(F) generated by the «;, the Intersection Condition clearly holds. One
checks the Size Condition by observing that any set of 8 of the 9 classes
including {a1,...,as} can easily by realized, by Proposition 6.7. This implies
the Size Condition for all subsets 7 of § not containing all 4 of the
composite classes. But if a subset 7' does contain all 4 composite classes,
then rank span 7 > 4 and card 7 <9 < 3 rank span T — 3.

Here 1s the matrix of the composite classes expressed in terms of the first
S independent classes.

1
0
0

f— = (O
_ O O

1
|
1
0

O O =

—1

One can visually check that all 2 by 2 minors have determinant O or +1.
One can check by brute force that the same holds for the 4 by 4 and 3 by
3 minors. (A computer helps!) A better way is to check that all five 4 by
4 minors give realizable collections of homology classes. The best way is a
neat trick : just observe that the transposed matrix, corresponding to 4+5 =9
classes on a surface of genus 4 is realizable by direct construction. This proves
that the Summand Condition holds.

Suppose that this collection can in fact be realized by pairwise disjoint
simple closed curves on F. If we cut open along the curve corresponding to
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as and cap off the resulting pair of boundary curves with two disks, then we
have a realization of the corresponding collection

S' = {1, 0, a3, 04,00 + n, 1 + Qo + 3,00 + @3 + 4,03 + 4}

contracted down onto a surface of genus 4. This collection is definitely
realizable. In particular we have a corresponding family of 4 pairwise disjoint
simple closed curves on the 2 x 4-punctured sphere. Homology considerations
show that the pair of disks, which must be removed, with the resulting
boundaries identified, to re-construct the original surface of genus 5, both lie
on the same side of the curves C, realizing 7, = a1 + a3 + a3 and C3
realizing v; = oy + a3 + a4. But by bare hands one can show that for any
realization of v; = a; + @, Y2, 73, and v4 = a3 + a4 by pairwise disjoint
simple closed curves on the 2 x 4-punctured sphere, both of the curves C
and C4 giving the classes «; and -y, must be separated by both of the curves
C; and C;. But because our particular realization comes from a hypothesized
realization of curves on a genus 5 surface, the added disks above must lie
on the same side of C, as does C; and also as does C4. This contradiction
shows that the given collection cannot be realized.

REMARK. The same set of 9 homology classes gives an example in any
surface of genus greater than 5 of homology classes satisfying the Intersection,
Summand, and Size Conditions that cannot be realized by a corresponding
family of pairwise disjoint simple closed curves.

This follows from Theorem 7.4 and Theorem 8.1 below.

8. SOME FINAL OBSERVATIONS

Notice that the Intersection, Summand, and Size Conditions in Theorem 1
make no mention of the genus of the ambient surface. A natural thought is
that these three conditions might suffice to realize given homology classes by
pairwise disjoint simple closed curves provided one is allowed to “stabilize”
the surface by adding additional handles. Here we show that there is nothing
gained by such stabilization.

PROPOSITION 8.1.  Suppose a surface F is expressed as a connected sum
F\#F, and we identify H\(F) = H|(F1)® H,(F,) in the obvious way. Suppose
further S C H{(Fy) C H((F) is a family of homology classes that can be
realized by pairwise disjoint simple closed curves in F. Then S can be
realized by pairwise disjoint simple closed curves in F 1-
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Proof. Suppose F; has genus g;, so that F has genus g = g; + ¢». As
usual we let S = {aq,...,q,7,...,%}, where ay,...,a, form a basis
for span S. In particular, n < g; and ay,...,a, form part of a symplectic
basis for the homology of F; as well as for F. We let Ay,...,A,,C1,...,C;
denote pairwise disjoint simple closed curves representing the corresponding
homology classes. We let F denote the result of cutting F open along
Ay,...,A, and F the result of filling in F with 2n disks. Then F is a closed
surface of genus g — n. We now view the curves Ci,...,Cy as living in F,
but missing the added disks. Note that these curves are all null-homologous
in F and hence each one of them separates F and F into two pieces. The
homology classes that the latter curves represent in the original surface F
and in F; are determined up to sign by the collection of disks in F they
surround. It follows that the curves Ci,...,Cy all together separate F (or F)
into k+ 1 pieces, with total genus g — n. In particular we see that there are
g —n homology classes o,41,...,a, represented by pairwise disjoint simple
closed curves A,41,...,A; In F disjoint from the original A{,...,A, and
C1,...,C such that oy, ..., a4 is half of a symplectic basis for the homology
of F itself. It follows that if we surger away Ag 41,...,Ay, then ay, ..., ay,
represents half of a symplectic basis for the homology of the resulting surface
F' of genus g, and if we identify the curves Aj,...,A, and Ci,...,C
with their images in F’, we see that we have indeed embedded pairwise
disjoint simple closed curves in F’ = F| representing the corresponding
homology classes. The point is that the homology classes ~; of the C;
are completely determined as linear combinations of the «;. And up to
homeomorphism the curves Aj,...,A, are determined by representing a
basis for a summand of the homology on which the intersection pairing
vanishes.

The perspective developed above can also be applied to show that any
system of pairwise disjoint homologically distinct simple closed curves can
be expanded to a maximal set of 3g — 3 such curves.

PROPOSITION 8.2. Suppose that F is a closed, orientable surface of genus
g and that S is a family of pairwise distinct homology classes represented by
pairwise disjoint simple closed curves. Then S can be extended to a family
of 39 — 3 pairwise distinct homology classes represented by a set of pairwise
disjoint simple closed curves, including the given collection of simple closed
curves.
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Proof. As usual we let S = {a1,...,an,,..., )y be a given set of
homology classes represented by a corresponding set of pairwise disjoint
simple closed curves, Ay, ...,A,, Ci,...,Ck, where aq,... o form a basis

for span S. We first argue that we can assume that n = g. If not, then as
above some component of F cut open along all the given curves has positive
genus. In that component we can then find a simple closed curve representing
a homology class independent of those in §. In this way we increase the span
of S until its rank is the maximum possible, namely g.

Now, when we cut open along our expanded family of simple closed curves
all resulting components have genus 0. If all components have exactly three
boundary components, then the euler characteristic argument of Section 2
shows that our collection already contains 3g — 3 elements. Otherwise, some
component G is a planar surface with at least m > 4 boundary components.
Now when F is reconstructed starting from G one may think of attaching
components of F — G to G. None of these extra components can have just
one boundary curve, since such a curve would be null-homologous. If such an
extra component has two boundary curves, then the corresponding boundary
curves of G would not be distinct, so we should actually be thinking in this
case of simply identifying the two boundary curves. Suppose that some pair of
boundary curves of G is identified in this way. Then it follows that in F' the
corresponding curve has a dual curve missing all the other curves representing
elements of §. In particular that boundary curve of G represents a homology
class in F independent of all the other classes in S. Now choose a simple
closed curve in G that surrounds one of these two boundary curves and one
other boundary curve. It follows that the corresponding homology class is
distinct from all other elements of S. In this way we have again expanded
the size of §.

Finally we may suppose no pair of boundary curves of G are to be
identified. We want to claim that some simple closed curve in G surrounding
3 boundary curves is homologically nontrivial in F and homologically distinct
from all other curves so far represented. A typical example of what we are
up against 18 the following: Think of the surface of genus g expressed as
the double of a (g + I)-holed sphere, with one side further decomposed by
more pairwise disjoint, homologically distinct, simple closed curves. Now the
challenge is to find more simple closed curves in the second side distinct
from those already appearing in the first side. On the first side we have used
at most [3g — 3 —(g+ 1)]/2 = g — 1 curves. But on the second side there
are, for example, (g+ 1)g/2 different homology classes represented by simple
closed curves surrounding just two boundary components.
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So suppose G has m > 3 boundary curves. Then H;(G) is free abelian of
rank m — 1, generated by the classes of the boundary curves, with the single
relation that the sum of the classes of the boundary curves is 0. Consideration
of the other components of F — G then implies additional relations of the
form “sum of boundary curves = 0” over the elements in each piece of a
partition of the set of boundary components, where each partition piece has at
least 3 elements. In particular we can obtain a basis for the image of H;(G)
in Hy(F) by selecting all but one boundary curve from each piece of the
partition.

Now in such a surface as G with its m boundary components there are
at most m — 3 pairwise disjoint simple closed curves, pairwise homologically
distinct and homologically distinct from the boundary curves. Even if G were
not a planar surface, there would be at most m — 3 such curves homologous
to some linear combination of the boundary curves. If the components of
F—G are Gy,...,G,, where G; has m; boundary curves, then Zle m; = m.
Moreover, the image of H;(G) in H(F) has a basis of > (m; — 1) =m —r
elements. Note also that 1 < r < m/3, since no component G; should
have just one or two boundary curves. Now in G; there are at most m; — 3
pairwise disjoint simple closed curves representing homology classes in the
linear span of the classes represented by the boundary curves of G;. It
follows that there are already in the originally given collection of curves at
most » (m; —3)+m = 2m — 3r distinct homology classes. On the other hand,
within G itself there are some 2"~" — m — 1 homology classes represented
by simple closed curves, excluding the classes represented by the boundary
curves and the O class. Therefore, in order to expand our originally given
collection of simple closed curves by adding a curve inside G, we need to
have

2" —m—1>2m—73r

or
2 —3x—-1>0

where x =m —r. But 2* = 3x -1 <0 only for x =1 or x =2 (among
integral x). That is to say there is trouble only if m—r =1 or m—r =2, 1.e,,
r=m—1 or m—2. But we already noted that we have 1 <r <m/3. So,
m—2 < r <m/3, which implies that m < 3. But we had already seen that
we could assume m > 3. Thus there must be suitable simple closed curves in
G that can be added to the given collection while maintaining the required
homological distinctness.
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