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on améne le bord B’ au potentiel 0. Toujours d’aprés la loi de monotonie
de Rayleigh, on a alors:

1
R4 > R4F > — Logd(v) ,
12
la derniére inégalité résultant du lemme 4. [
Fin de la preuve du lemme 3. Soit K le compact de I’énoncé de la propo-
sition. Rappelons qu ’il est contenu dans I’intérieur de K. Notons 6 la dlstance

hyperbohque de K a D2\K. Pour tout sommet v € S on a d(v) =
donc Reff Z — i Log Se, ce qui est bien le résultat cherche. L]

VII. COMMENTAIRES

1. SUR L’INEGALITE DE HARNACK

L’estimation obtenue ici en n’est ni optimale, ni propre aux

|/~ Loge
réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit # une fonction de Z<¢ dans R. On pose

1
Aou(x) = u(x) — > Y u(s)

S~ X

(Ia somme est étendue a tous les voisins de x dans le réseau Z9).

THEOREME 1. [l existe une constante C telle que si u est une fonction

harmonique (pour Ay) positive sur la boule combinatoire de 79 de
centre 0 de rayon N, alors

u(0)
u(l)
Dans le cas de la dimension 3, ce théoréme avait déja été démontré par

R.J. Duffin ([Du]) dans les années cinquante. Dans [L1], G.Lawler étudie
également les opérateurs a coefficients variables:

|C
& —

N

THEOREME 2. Soit A,B deux réels vérifiant 0 < A < B. 1l existe

alors deux réels C et a,a €]0, 1], qui ne dépendent quede A,B et d,
et possédant la propriété suivante:
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Soit L un opérateur de la forme Lu(s) = c,u(s)+ ¥ Css U(S")

s’ ~s
opérant sur les fonctions numériques définies sur Z.9 et dont les coefficients
vérifient: A <c; < B, A —Cso KB, ¢+ ¥ Cor=0 et Cyyr = Cyorr

s’ ~s
rs

ou s" est le symétrique de s’ par rapport @ s. Alors si u est
une fonction définie sur la boule combinatoire de 7.9 de centre 0 de
rayon N, telle que

Lu=0 e u=0,
on a

u(l)

On notera que la condition de symétrie sur les coefficients n’est pas celle
d’un laplacien discret (& savoir ¢y = Cyy).

< —.
N¢

u(0) { | C

2. SUR LE THEOREME DE RODIN-SULLIVAN

Nous citons ici deux généralisations du théoreme de Rodin-Sullivan. Soit
©! le 1-squelette d’une triangulation @ d’un disque topologique et & un
empilement de cercles de combinatoire @ ! plongé isométriquement dans %.
Notons & I’empilement d’Andreev associé a & normalisé comme au début
de II. On note @, (resp. &) la réalisation géométrique de & définie
par & (resp. ?/;), et f#: ©yp — ©4 Papplication affine par morceaux qui
envoie de manic¢re affine chaque triangle de © 4 sur son correspondant
dans @ 5.

Soit € > 0 et supposons que la distance de Hausdorff d.(0 24,0 %)
soit < € ainsi que tous les rayons des cercles de Z2. On a le

THEOREME 1. S§’il existe une constante C telle que pour tous
cercles c,c’ de 2,

1 rayon(c

1 orayon(@

C rayon(c’)
Alors [ converge uniformément sur les compacts de % vers 'uniformi-
sation de Riemann f de %, lorsque ¢ tend vers O.

Ce théoréme a été obtenu en premier par Kenneth Stephenson en 1991
(voir [Stl1] et [St2]). Sa preuve repose sur le lemme de Schwarz-Pick discret
de [B-St2] et le théoréme de récurrence de Polya.
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En 1993, Zheng-Xu He et Burt Rodin ont montré comme le résultat de
rigidité de Rodin-Sullivan permettait de prouver le théoréme 1 (voir [He-R]).
Ils obtiennent également la méme conclusion sous des hypothéses plus faibles:

THEOREME 2. On suppose que les valences des empilements & sont
bornées par un entier positif k.

Alors f.» converge vers f uniformément sur les compacts de
lorsque € tend vers 0.

Leur méthode repose sur des arguments développés par He dans [He].

Rajouté sur épreuves: Laurent Saloff-Coste a récemment amélioré I'inégalité
de Harnack (voir [Sa]). Quant au théoréme de Rodin-Sullivan, il a été consi-
dérablement généralisé par Zheng-Xu He et Oded Schramm (voir [He-Sc]).
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