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on amène le bord B' au potentiel 0. Toujours d'après la loi de monotonie

de Rayleigh, on a alors:

^eff5 ^ ^eff ^ ^2
^Og £/(*>) '

la dernière inégalité résultant du lemme 4. D

Fin de la preuve du lemme 3. Soit K le compact de l'énoncé de la proposition.

Rappelons qu'il est contenu dans l'intérieur de K. Notons ô la distance

hyperbolique de K à D2\^. Pour tout sommet v e Sf on a d(u) ^ -

donc Rlif ^ - j^Logôs, ce qui est bien le résultat cherché.

VII. Commentaires

1. Sur l'inégalité de Harnack

L'estimation obtenue ici en
1

n'est ni optimale, ni propre aux
]/ - Log s

réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit u une fonction de Zd dans R. On pose

1 _Aqu(x) u{x) 2, u(s)
2d s~x

(la somme est étendue à tous les voisins de x dans le réseau Zd).

Théorème 1. Il existe une constante C telle que si u est une fonction
harmonique (pour À0) positive sur la boule combinatoire de Zd de

centre 0 de rayon TV, alors

m _ 1

wo)
c

^ —.
TV

Dans le cas de la dimension 3, ce théorème avait déjà été démontré par
R.J. Duffin ([Du]) dans les années cinquante. Dans [Ll], G.Lawler étudie
également les opérateurs à coefficients variables:

Théorème 2. Soit A,B deux réels vérifiant 0 < A < B. Il existe
alors deux réels C et a, a e]0, 1[, qui ne dépendent que de A, B et d,
et possédant la propriété suivante:
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Soit L un opérateur de la forme Lu(s) csu(s) + £ css>u{s')
s' ~ s

opérant sur les fonctions numériques définies sur Z d et dont les coefficients
vérifient: A <: cs f B, A f - css, < + £ c„, 0 c„,

s' ~ S

où s" est le symétrique de s' par rapport à s. Alors si u est
une fonction définie sur la boule combinatoire de Zd de centre 0 de

rayon N, telle que

on a
Lu 0 et u ^ 0

CK(0)

u(1)
1

Na

On notera que la condition de symétrie sur les coefficients n'est pas celle
d'un laplacien discret (à savoir cSS' cS'S).

2. Sur le théorème de Rodin-Sullivan

Nous citons ici deux généralisations du théorème de Rodin-Sullivan. Soit
le 1-squelette d'une triangulation W d'un disque topologique et & un

empilement de cercles de combinatoire plongé isométriquement dans %.

Notons l'empilement d'Andreev associé à & normalisé comme au début
de II. On note W#> (resp. §?.#) la réalisation géométrique de W définie

par g? (resp. #), et f#> : W#> -> W& l'application affine par morceaux qui
envoie de manière affine chaque triangle de sur son correspondant
dans W&.

Soit s > 0 et supposons que la distance de Hausdorff d%»{dë?<?9à%)

soit < 8 ainsi que tous les rayons des cercles de On a le

Théorème 1. S'il existe une constante C telle que pour tous
cercles c, c' de

1

^ rayon (c) ^ ^^ ^ c
C rayon (c')

Alors f converge uniformément sur les compacts de °à vers l'uniformisation

de Riemann f de lorsque 8 tend vers 0.

Ce théorème a été obtenu en premier par Kenneth Stephenson en 1991

(voir [Stl] et [St2]). Sa preuve repose sur le lemme de Schwarz-Pick discret
de [B-St2] et le théorème de récurrence de Polya.
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En 1993, Zheng-Xu He et Burt Rodin ont montré comme le résultat de

rigidité de Rodin-Sullivan permettait de prouver le théorème 1 (voir [He-R]).

Ils obtiennent également la même conclusion sous des hypothèses plus faibles :

Théorème 2. On suppose que les valences des empilements sont

bornées par un entier positif k0.

Alors /> converge vers f uniformément sur les compacts de %

lorsque s tend vers 0.

Leur méthode repose sur des arguments développés par He dans [He].

Rajouté sur épreuves: Laurent Saloff-Coste a récemment amélioré l'inégalité
de Harnack (voir [Sa]). Quant au théorème de Rodin-Sullivan, il a été

considérablement généralisé par Zheng-Xu He et Oded Schramm (voir [He-Sc]).
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