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UNIFORM DISTRIBUTION ON DIVISORS
AND BEHREND SEQUENCES

by Gérald TENENBAUM

1. DEFINITIONS AND BASIC RESULTS

The purpose of this paper is twofold: to give a consistent, largely self
contained account on the theory of uniform distribution on divisors, and to
establish effective estimates with immediate applications to the construction
of Behrend sequences.

We recall that a strictly increasing sequence .o/ of integers exceeding 1
is called a Behrend sequence if its set of multiples

M(L):={ma:ae o, m>=1}

has asymptotic density 1. As underlined by Erdds in [5], the problem of
characterising Behrend sequences appears to be both very difficult and
fundamental for describing the multiplicative structure of normal integers.
Recent progress in the area of sets of multiples and Behrend sequences may
be found in [6], [12], [15], [22], [24]. '

The definition of uniform distribution on divisors is due to Hall [9].
It may certainly be regarded as a concept of independent interest, which
is worth being developed for its own sake. The idea is to give a rigourous
content, given an arithmetic function f, to the assertion that, for almost all
integers n, the numbers f(d) are evenly distributed modulo 1 when d runs
through the divisors of n. To this end, we define the discrepancy function

A(n; f):=  sup ; ) I - @-ut(n |,
Ougog!l tdnu<{fd)<v

where, here and throughout this paper, we let (u) denote the fractional
part of the real number u. We then say that f is uniformly distributed on
divisors (in short: erd, for the French équirépartie sur les diviseurs) if

(1) A(n; f) = o(t(n)) pp,
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where t(n) stands for the number of divisors of n. Here and in the sequel
we use the notation pp (resp. pp/) to indicate that a relation holds on a
sequence of asymptotic density 1 (resp. logarithmic density 1).

In 1978, Hall [10] introduced the closely connected notion of divisor
density. An integer sequence .o/ is said to have divisor density z, in which
case we write D.o/ = z, if

w(n, #Z):= )Y, 1={z+o®}t(n) pp.

dln,de o

The link with uniform distribution on divisors is as follows. Writing

(2) A (z; f)={d =2 1:{f(d)) <z},
we obviously have
(3) Do (z;f)=2z (z€l0,1])

whenever f is erd. Moreover, as one might expect from classical results in
the theory of uniform distribution modulo 1, it is not very difficult to prove
that this last condition is also sufficient.

THEOREM 1 (Hall [11]). Let f be an arithmetic function. Then [
is erd if, and only if, condition (3) holds.

Proof. We only need to show that the condition is sufficient. Suppose
that f is not erd. Then, for suitable € > 0, we have A(n; f) > 4et(n) for
all integers »n in a sequence % with positive lower density. Hence for each
ne % there exists z, € [0, 1] such that | Ty(n,z,) — z,7(n) | > 2e1(n),
with

4) Tr(n,z):=1(n, (z; 1)) =|{d|n: {(f(d)) <z}]|.

Let g be any integer > 1/&. By the monotonicity of the function
z~ Tr(n, z), we can find an integer @,0 < a < g, such that

| Ty(n,a/q) — (a/q)t(n) | > ex(n) .

Since 4% has positive lower density, this implies that (3) cannot hold for
z=a/q.

Davenport & Erddés [2], [3], proved that a set of multiples necessarily
has logarithmic density, equal to its lower asymptotic density. This implies
that a (necessary and) sufficient condition for an integer sequence .o/ to be
Behrend is that &.#(A) = 1. Here and in the remainder of the paper, we use
the letter & to denote logarithmic density. The following result is a criterion
for divisor density much in the same spirit.
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THEOREM 2 (Hall & Tenenbaum [13]). Let &/ be an integer sequence.
Then we have D.o/ = z if, and only if,

t(n, £ ):= Y, 1={z+ol)}t(n) ppl

dln,de o/

The proof rests upon the Hardy-Littlewood-Karamata Tauberian theorem.
An immediate corollary of Theorems 1 & 2 is the following slightly surprising
statement.

COROLLARY 1. Let f be an arithmetic function such that

(5) A(n; f) = o(x(n)) ppl.
Then f is erd.
Proof. From (5), it is clear that t(n, 2/ (z;f)) = {z+ o)}t (n)pp!

for all z € [0, 1]. By Theorem 2, it follows that (3) holds, so Theorem 1 yields
the required conclusion.

Corollary 1 opens new possibilities for constructing ‘thin’ Behrend
sequences inasmuch as pp/ upper bounds for the discrepancy are usually much
easier to achieve than bounds valid on a set of asymptotic density 1. For
convenience of further reference, we make a formal statement.

THEOREM 3. Let €(n) be a non-increasing function of n such that
e(n) = o(l), e(m(n)—> o ppl,
and let f be an arithmetic function satisfying
A(n; f) <se(myt(n)  ppl.
Then the integer sequence
o ={d > 1:{f(d)) < e(d)}
is a Behrend sequence.
Proof. We plainly have
[{dln: (f(@) <e(m}]>e(mt(n) - An; /) >5e(n)T(n)  ppl.

Since &(d) > e(n) whenever d|n, this implies & /()= 1. By the
Davenport-Erdés theorem, we deduce that .7 is a Behrend sequence.

Thus the problem of finding effective bounds on a set of logarithmic
density 1 appears to be essential in both problems of obtaining erd-type results
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and of constructing Behrend sequences. The remainder of this paper is devoted
to describing the various methods that have been devised to this end. -

An obvious consequence of Theorem 1 is that any effective criterion for
divisor density may be employed to decide whether a given function is erd.
We now quote a result of this kind. The statement involves a function
R(x) < x which is increasing and has the property that, for all y € [0, 1]
(but actually y = isuffices) there is a suitable Stieltjes measure dA,(?) on
[0,5] with [dA,(¢) | < ¢-7dt and

1/2

(6) ), yewm = § x'=1dh, (7)) + O(x/R(x)) ,
n<Xx 0

where, here and in the sequel, we let Q(n) (resp. @ (#)) denote the total number

of prime factors of n, counted with (resp. without) multiplicity. It is shown

in [13] that

R(x) = exp{(logx)*/>~¢}

is an admissible choice for all € > 0, and an examination of the proof
shows that x/R(x) is essentially of the size of the error term in the prime
number theorem — see also [25], chapters I1.5, 11.6 and notes on §1I1.5.4.

THEOREM 4 (Hall & Tenenbaum [13]). Let {u;};_, be a strictly increas-
ing sequence of positive real numbers such that |{j: u; < x} | < R(x°M)
and put o .= uj‘-”: V(o uzj ] LY. Then &</ =z implies that
D« =z

Theorem 4 provides a ready-to-use sufficient condition for smooth

functions to be erd. For instance, it enables one to recover immediately the
two following basic results. We let log, denote the k-fold iterated logarithm.

COROLLARY 2 (Tenenbaum [23]). The function d— (logd)® is erd
if, and only if, o > 0.

This result was conjectured by Hall in [9].

COROLLARY 3 (Hall [9], [10]). The function d— (log,d)? is erd Iif,
and only if, B > 1.

It is straightforward to check that the sequences .27 (z; f) defined by (2)
for f =log® and f = logg satisfy the hypotheses of Theorem 4 whenever
a >0, B > 1. On the other hand, as observed by Hall in [9], relation (1)
does not hold for f(d) = (log,d)? when B < 1. Indeed, let 0 < 6 < 2-1/B
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and consider the set &(8) of integers of the form n = mp with p® > m,
which has natural density log(l + &8). For n € &(8), there are at least
%'c(n) divisors d of n which are divisible by p, and all of these verify

F(p) < f(d) < f(p'*?) < f(p) + 88, Thus A(n; f) > (5 - 8°) (n).

The strongest limitation in Theorem 4 is the growth condition on the
sequence {u;};_,, which, in the present state of knowledge concerning
the error term of the prime number theorem or the zero-free region for the
Riemann zeta function, certainly implies that

(7) [{j:u; < x}| = exp{o((logx)*">(log,x) ~/?)} .

Thus, we can only obtain from Theorem 4 that

f(d) = exp{(logd)*°}

1s erd for 0 < a < 3/5, although it is natural to conjecture that this holds for
all positive o # 1. We shall see in section 3 that this can indeed be established
for the range 0 < a < 3/2, a # 1. To tackle functions f beyond the scope of
Theorem 4, one possibility is to appeal, as already done in [13], to the
criterion for uniform distribution on divisors established in [23]. In the spirit
of the Weyl criterion for ordinary uniform distribution modulo 1, this is
formulated in terms of exponential sums. We now provide an effective form
of this criterion. Given an integer v, we put

(8) e ()= ogn)-2 ¥ |y e)
k< x n<x n4em
n = 0(mod k)

Here and throughout the paper we use the traditional notation
e(u) = e?™(y € R) .

THEOREM 5. Let f be an arithmetical function. Then f is erd if,
and only if, we have, as x — o,

) evix; f)=o0(1) (v+0).

Furthermore, if this is the case, then the upper bound

T>1 1<vT \Y%

(10) A(n; f) < &(n)t(n) min {—7172 + logT E M}m pp!/

holds for arbitrary &(n) — o, where ey (x; f) is, for each vV, any

non-increasing function such that x— e’ (x;f )/1og x is non-decreasing
and ¢e,(x; f) <e, (x;f) holds for large x.
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Thus, the problem of finding effective pp/ bounds for the discrepancy
(with the byproduct, which is essential here, of exhibiting new types of
Behrend sequences) may be reduced to the study of appropriate exponential
sums with multiplicative coefficients.

Proof of Theorem 5. First assume that f is erd. For k> 1, x > 2,
0<z<1, put

1
D, (z;x) = (logx) 172 < (log x) ~ 174 .
"<X,n§0(modk) n4%) k4 k)
(f(n)) <z

By the author’s criterion [23] for divisor density and Theorem 1, we have
that

(11) Fr(2):= Y [®@u(z5x%) — 2@, (1;x) | = 0(1) (x> )

k<x

for all fixed z € [0, 1]. Now for any non-zero integer v we have

ev(x; f) = )

k

f e(vz)d®,(z; x)

0

X

-k

k

1
2TVi § e(v){®y(z;x) — z0,(1; x)}dz

* 0

0

1
<2n|v] g F.(z)dz .

Since F,(z) = O(1) uniformly in x, z, the required conclusion (9)
follows by Lebesgue’s theorem of dominated convergence.

Conversely, we now assume that (9) holds and derive a pp/ upper bound
for A(n; f). By the Erdés-Turdan inequality for the discrepancy (see
e.g. Kuipers & Niederreiter [19], theorem 2.5) we have for all » and T > 1

T(n gv(n)
(12) A(n;f)<—(T—)+ ) | y

1<v<T AY

with g,(n):= Y d|ne(v f(d)). By the Cauchy-Schwarz inequality, we infer
that
T(n)? | gy(n) |?

pe +logT )Y —>—.

1<vgT Vv

(13) A(n; f)? <
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We now estimate |g,(n)|? on logarithmic average with weight 1/49(,
The procedure is similar to the proof of theorem 1 of [23]. Writing
o = 1/log x, we have

Z |gV(n)|2<€ i |gv(n)|2

Ly(x):= n4 Q0 | nl+oqem

n<x n=

(14) < L g, L (@ =v/0)

e(vf(d) - vf()
dt>1 [d, ] o440

where we used the notation

* Q(n)

(15) C(s,») = Z

=l A-yp=9-1 (lyl<2, Res>1).
p

We note that

C(1+0,i)=C(1+o)1/4H(1_ . )“(1_ 1)1/4

(16) P 4pl+c p1+0
~ H(5) Qlogx)'/* (x> o),

with

S
H(y):=H(1—}—’) (1—;) (lyl<2).

Using the identity

1
mi*to4Qim — ¥ \(k,0)k' o490 with A(k, 0):= [] (1 - ) <1,

k|m plk

we may rewrite the last double sum in (14) as

e(v/(d) —vf(1) Y Ak, o)k 0496

dr>1  (di)t+e4e@n G,

(17)
_ oy Mko) | 5 e(vikm)|?

k=1 kl+c4Q(k) m= 1 ml+o4Q(m)

Bounding A (k, 6) by 1, and noticing that the m-sum is at most Z;(l + o, )
in absolute value, we see that the quantity (17) does not exceed
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l 1

C(l+o,i) Y

wo 1 kl+o4900)

i e(vf(km))

= ml+o49m

:C(1+c,i) ij

1 nl+o4Q(n)

¥ e(vf(n)
s

Inserting this upper bound into (14) and appealing to (16) we obtain

[0}

L,(x) < (logx)12 ¥

k=1

s e °“dAy(u)

00—

with A,(u):= Znseu,k|ne(vf(n))4*9(”)n*1. Integrating by parts, it
follows that

o

L,(x) < o(logx)’2 ¥

k=1

0

j‘m e “Ar(u)du
(18)

(o o]

< (logx) 172 S A(u)e-°“du

0

with A(u):= Y, _, | Ar(w) | < &) (e*; f))/u. The last integral may be easily
estimated using the monotonicity properties of & (e*; f). We have

s A(u)e-%du

0

o

1/¢
<§ sj(e“";f)]/l/cdu+§ el (el9; fe o )/udu

0 1/06
< (log x)*2e5 (x; f),
and so L,(x) < (logx)e! (x; f). Inserting this into (13), we deduce that,
for any 7'> 1,

(19)  (logx)~' X BT 1y gt ) 8.5 /)

n<x 4Q(n) T2 1<v<T vV
Using the inequality
t(n) 2 2°MW/&(n)'?  pp,

which follows from the fact that Q(n) — w(n) is bounded on average, we
infer from (19) that
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|1 ey (x; )12
(20)  A(n; f) < t(n)E(n) min {—— +logT )Y ———
r>1 (T2 1<vsT v
holds for all n < x except those of a set €, with ¥ o (1/n) = o (log x).
The stated result follows since the quantity inside curly brackets in (20)
is a non-increasing function of x for each fixed 7.

It would be possible to obtain pp upper bounds for the discrepancy
in Theorem 4 along the lines of the proof of Theorem 2, appealing to an
effective form of the Hardy-Littlewood-Karamata Tauberian theorem.
However, the resulting estimate would be much weaker than (10). Such an
analysis might of course be pursued for its own sake, but is irrelevant in the
present context, as we remarked earlier.

The pp!/ upper bound (10) is by no means a unique or optimal choice.
We now summarise what we believe to be the three most important variations.

It is convenient to introduce the following definition.

DEFINITION. A function F:R*™ = R* s called slowly increasing
(resp. slowly decreasing) if it satisfies for suitable x, > 0

F(x) <. F(x&) (resp. F(x) >.F(x®)) (x> xo)
for all ¢ €]0, 1].

Recall the formula

go(n):= Y e(vf(n).

d|n
Then it is an immediate consequence of the Erdés-Turan inequality (12) that

ey Y A(n; f) (2)9(”) g Qogx)” y 1 y |gv(n)|()5;)9(n),

n<x n T I1<v<T V ngx n

uniformly for x>2,7>1,0<y<y;<4. Suppose E, (x,y)logx is
an upper bound for the right-hand side of (21), corresponding to some
optimal -or quasi-optimal choice T = T'(x, y), which has the property that

x = E;(x,y) is slowly increasing. Then we deduce from (21) the following
Statement.

THEOREM 6. Let E(n) > » and 0 < y,< 4. Then, Jor any function
Y =y(n) with values in [0,y,] such that nw E,(n,y(n)) is slowly
increasing, we have

(22) A(n; f) < &Em)t(n)E (n,y)y %™ ppl.
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Of course, from our assumption on E,(x, ¥), any y(n) = y independent
of n will be an admissible choice. Since Q(n) has normal order log, n, the
optimal function y(n) in (22) will be close to y = y;(n) minimising the
expression

(23) (logn) -V E,(n,y) ,

and indeed this choice always approximates the minimum of the right-hand
side of (22) to within a factor (log n)°®.

Theorem 6 is only applicable when one disposes of non-trivial estimates
for the right-hand side of (21). This is in particular the case when f is additive,
for g, is then multiplicative. We shall study this situation in detail in
section 5.

When individual bounds for | g,(#n) | fail to yield non-trivial information
on the weighted average appearing in (21), one can still perform a compu-
tation parallel to (13)-(17), but with (i) Q) replaced by (i y) Q. This
gives, uniformly for x > 2, 7> 1, 0 <y <y, <8,

(logx)~' ¥ M(Z)Qm

(24) n<x n 4
log x)” 1 1
< (_g__)_ + log T'(log x)»/4 -1 Z - H,(x,y),
) T? 1<v<T V
with
(25) IS Q (k) co Q(m) 2
y 1 y e(vf(km))
H,(x,y):= — — ————— | (o:=1/logx) .
(x: ) kz=:1 (4) kl+o mz=1 (4) mlto

At this stage, we may employ two distinct strategies. The first one
corresponds to cases in which we can take advantage of the presence of the
squared modulus in (25). If we then denote by E,(x, y) an upper bound for
the right-hand side of (24) which is slowly increasing as a function of x,
we obtain the following result.

THEOREM 7. Let &(n) > o and 0 < y,< 8. Then, for any function
y =y(n) with values in [0,y,] and such that n— E,(n,y(n)) is
slowly increasing, we have

(26) A(n; f) < &(m)t(n)y "2 Ey(n,y) ppl.

Here again the optimal y must be close to y = y,(n) minimising the
expression

(logn) ~'eYE,(n, y) .




UNIFORM DISTRIBUTION ON DIVISORS 163

The second strategy, which corresponds to cases when a ‘linearized’
upper bound is more convenient, consists in bounding trivially one of
the two (identical) factors of the square in (25) by {(1 +o0,y) and
then repeating mutatis mutandis the procedure described in (18)-(20).
For0<y<38,v>1,lete! (x,y;f) beanon-increasing function of x such
that x = ¢! (x, y; f) (log x)»/? is non-decreasing and, for all x > 2,

Q(n)
(27) (logx) /% Y, D (i_;) &gﬁ& ; <e, (/).
k<x n<x
n = 0 (mod k)

We arrive at the following estimate generalising (19): the bound

y (y)"(”) A(n; f)?

4

(28) ——— < (logx) Y E5(x, )

n

n<x

holds uniformly for x > 2, 0 < y < yy, with

+ .
E;(x,y):= min {i +logT Y SV—(X’Z’—Q} .
T>2 T? 1<vgT \Y%

The monotonicity hypotheses on the functions €7 (x, y; f) are slightly
awkward in practical use, and, for convenience of further reference, we
note right away that they may be slightly relaxed. Let us say that a positive
function F' is weakly increasing (resp. weakly decreasing) if it satisfies
F(t) < F(x) (resp. F(t) > F(x)) for t < x. Then it is enough for (28)
to assume that €7 (x, y; f) and (log x)*>'2e’ (x, y; f) are respectively weakly
decreasing and weakly increasing functions of x.

The upper bound (28) immediately implies, in a straightforward way,
our next theorem.

THEOREM 8. Let ¢&(n)—> oo, 0<y,<8, y=yn) e[0,y,] and
suppose that E¥(n,y) is an upper bound for E;(n,y) which is slowly
increasing as a function of n. Then we have

29)  A(n; f) <&(n)t(n)(ogn)©-12y-8W21/E*(n,y) ppl.
As before, we remark that the choice y = y;(n) minimising the expression
(logn)? =11y Es(n, »)

yields an approximation of the optimum to within a factor (log n)°®).
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