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PROPOSITION 10 (Lott, Dodziuk). The answer to the zero-in-the-spectrum
question is “yes” if M is a two-dimensional manifold.

Proof. The Hodge decomposition gives

(4.4) AY(M) = Ker(Ag) & A°(M)/ Ker(d),
(4.5) A (M) = Ker(A ) ® dAYM) @ «dAO(M),
(4.6) A2(M) = *Ker(Ag) @ *(A°(M)/ Ker(d)).

-Thus it is enough to look at
Ker(Ag), Ker(A;) and o (Lo on A°(M)/ Ker(d)) .

We argue by contradiction. Assume that zero is not in the spectrum. By
Proposition 4, Im(H.(M) — H'(M)) = 0. Thus M must be planar, in the
sense of either of the following two equivalent conditions :

1. Any simple closed curve in M separates it into two pieces.
2. M is diffeomorphic to the complement of a closed subset of S2.

As Ker(/\g) = 0, M cannot be S?. By Proposition 5, the possible existence
of nonzero square-integrable harmonic 1-forms on M only depends on the
underlying Riemann surface coming from the Riemannian metric on M.

We recall some notions from Riemann surface theory [1]. A function
f € C®°(M) 1s superharmonic if Agf > 0. (This is a conformally-invariant
statement.) The Riemann surface underlying M is hyperbolic if it has a
positive superharmonic function and parabolic otherwise. If M is planar and
hyperbolic then there is a nonconstant harmonic function f € C*°(M) such
that | wd Nxdf < oo [1, p. 208]. Then df would be a nonzero element of
Ker(A;). Thus M must be parabolic.

Put Ag = inf(0(4p)). Choose some A such that 0 < A < )y. Then
there is a positive f € C>°(M) (not square-integrable !) such that Aqf = Nf
[31, Theorem 2.1]. However, this contradicts the parabolicity of M. [

We do not know of any result analogous to Proposition 10 for general

two-dimensional simplicial complexes, say uniformly finite. See, however,
Subsection 5.2.
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