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4.2 Two Dimensions

Proposition 10 (Lott, Dodziuk). Tanswer to the zero-in-the-spectrum

question is "yes" if M is a two-dimensional manifold.

Proof. The Hodge decomposition gives

(4.4) A°(M) Ker(A0) ® A°(M)/ Ker

(4.5) A1 (M)Ker(Ai) ® °(M) ® °(M),

(4.6) A2(M) * Ker(A0) ® * (A°(M)/ Ker(J)).

Thus it is enough to look at

Ker(Ao), Ker(Aj) and cj (A0 on A°(M)/Ker(rf))

We argue by contradiction. Assume that zero is not in the spectrum. By
Proposition 4, Im(H*(M) -» H^M)) 0. Thus M must be planar, in the

sense of either of the following two equivalent conditions :

1. Any simple closed curve in M separates it into two pieces.

2. M is diffeomorphic to the complement of a closed subset of S2.

As Ker(Ao) 0, M cannot be S2. By Proposition 5, the possible existence

of nonzero square-integrable harmonic 1-forms on M only depends on the

underlying Riemann surface coming from the Riemannian metric on M.
We recall some notions from Riemann surface theory [1]. A function

/ G C°°(M) is superharmonic if A0/ > 0. (This is a conformally-invariant
statement.) The Riemann surface underlying M is hyperbolic if it has a

positive superharmonic function and parabolic otherwise. If M is planar and

hyperbolic then there is a nonconstant harmonic function / G C°°(M) such
that JMdf A < oo [1, p. 208]. Then df would be a nonzero element of
Ker(Ai). Thus M must be parabolic.

Put A0 inf (cr(Ao)). Choose some À such that 0 < À < À0. Then
there is a positive / G C°°(M) (not square-integrable such that Aq/ Xf
[31, Theorem 2.1]. However, this contradicts the parabolicity of M.

We do not know of any result analogous to Proposition 10 for general
two-dimensional simplicial complexes, say uniformly finite. See, however,
Subsection 5.2.
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