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7. CENTRALISERS IN SBn

7.1 Theorem. For a singular braid x e SBn the following are

equivalent:

(a) GjX xok;
(b) GjX XGrk, for some nonzero integer r;
(c) GjX XGrk> for every integer r;
(d) tjx XT k;

(e) TjX XT rk, for some nonzero integer r;
(f) x has a (possibly singular) (y, k)-band.

Proof. We only show (b) implies (f). The other implications are quite
clear. The term "band" will include the possibility of a singular band.

Suppose GjX XGrk. Then we have that G2rx XG2kr. Assume x ßiyy,
where ß is a braid; in other words t/ is the first singular generator appearing
in x. Then we have ß ~1 o^ßi/j TtyG2kr. Recall that isotopy, or the
extended Reidemeister moves for singular braids, do not change the order
of singular generators on the same strings. Since ß_1o2/'ß is a pure braid,
the tJ in T/yo 2kr corresponds under some homeomorphism, to the t, in
ß -1 cj?rßT/jv. Hence the image, under that homeomorphism, of the trivial
singular band near the first u; provides a band for ß_1oy2rß. Therefore, t,
commutes with ß_1o2rß. It follows that T/ß ~1 o2/"ßy i/jöf. By Proposition

5.1, we have ß_1oy2/"ßy yo2kr, i.e. o2rßy - ßyo2/". By induction,
ßy has a (y,/:)-band. Since t, commutes with ß ~ 1 rß, so does o/5 thus

we have ß_1o2/"ßo/y G/ß-1o2rßy o;yo^, i.e. o2/"ßo/y ßo/yo^r. It
follows from induction assumption that ßo/y has a (y, /:)-band. Since both
ßy and ßozy have a (y, A:)-band, we can use the argument of Lemma 6.4

to conclude that x ßu/T has a (y, /:)-band.

The above theorem allows us to identify monoid centralisers in SBn.
Notice that SB2 is abelian. On the other hand, for n ^ 3, any singular braid
with a singularity involving strings labelled, say, j and k, y < k, could not
possibly commute with t*, as any (singular) band from [k, k + 1] xO
to [/:,£+ 1] x 1 would have a forbidden intersection with the y string,
see Figure 7. Therefore for n ^ 3, only nonsingular braids are central. We will
conclude with two applications whose proofs, at this point, can safely be left
to the reader.
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7.2 Theorem. The centre of SBn is all of SBn for n 2. But in

case n ^ 3 it is the same as the (infinite cyclic) centre of Bn C SBn,

generated hy A2.

7.3 Theorem. Under the natural inclusion, the centraliser of SBr in

SBn, r ^ n, is generated as a monoid by the generators (see Theorem 4.4)

of C{r,n):

Or-f 1 (5 /• -f 2 J • • • 5 Ofl— + 1 C 5

together with their inverses and the singular generators:

t,+ 1, if r^ 3, or

t i t3, t4, t w i if r 2 D
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