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94 R. FENN, D. ROLFSEN AND J. ZHU
7. CENTRALISERS IN SB,

7.1 THEOREM. For a singular braid x e SB, the following are
equivalent:

(a) o©;jx = XG0y,

(b) ch = x6,, for some nonzero integer r;
(c) J’x = x6), for every integer r;

(d) 71;x=XxTk;

(e) r;x = x1,, for some nonzero integer r;

(f) x has a (possibly singular) (j, k)-band.

Proof. We only show (b) implies (f). The other implications are quite
clear. The term ‘“band” will include the possibility of a singular band.
Suppose 6x = xo,. Then we have that ojz.’x = xc3 . Assume x = B1;),
where 3 is a braid; in other words 7, is the first singular generator appearing
in x. Then we have B‘loz’Bt,y = T; yck . Recall that isotopy, or the
extended Reidemeister moves for singular braids, do not change the order
of singular generators on the same strings. Since B~ 'o JZ.’B is a pure braid,
the t;, in T; yc52’ corresponds under some homeomorphism, to the t; in
B ‘10 "Bt;y. Hence the image, under that homeomorphism, of the trivial
smgular band near the first 1, provides a band for B ~'c jz-rB. Therefore, 1;
commutes with B‘lojz-’B. It follows that TP *lczrﬁy = T, yoir. By Propo-
sition 5.1, we have B*lo "By = yoi, i.e. cs "By = Byc: . By induction,
By has a (J, k) band. Since t; commutes w1th B—lo "B, so does o;, thus
wehaveB‘lc ch—csB‘lo "By = 0;y6%, i.e. 0 "Bo;y = Bo,yoi . It
follows from induction assumption that Bo;y has a (J, k)-band. Since both
By and Po;y have a (j, k)-band, we can use the argument of Lemma 6.4
to conclude that x = Bt;» has a (J, k)-band. [

The above theorem allows us to identify monoid centralisers in SB,.
Notice that SB, is abelian. On the other hand, for » > 3, any singular braid
with a singularity involving strings labelled, say, j and k, j < k, could not
possibly commute with 7t,, as any (singular) band from [k, k+ 1] X 0
to [k, k+ 1] x 1 would have a forbidden intersection with the j string,
see Figure 7. Therefore for n > 3, only nonsingular braids are central. We will
conclude with two applications whose proofs, at this point, can safely be left
to the reader.
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7.2 THEOREM. The centre of SB, isall of SB, for n=2. Butin

case n =3

it is the same as the (infinite cyclic) centre of B, C SBh,

generated by A2. [

7.3 THEOREM. Under the natural inclusion, the centraliser of SB, in
SB,, r < n, is generated as a monoid by the generators (see Theorem 4.4)

of C(r,n):

Cr+150r+25 «ee) GnﬂlsAr-i-l,”'aAnsCs

together with their inverses and the singular generators:

[Art 1]

[Art 2]
[Bae]

[Bar]
[Birl]

[Bir2]
[Bur]

[BZ]

[Charl]
[Char2]
[Chow]

[ECHLPT]

[FRR]
[Gar]

[GS]

Triqs s Tno1 if r=3, or
Ty T3y Tay ey Ty I r=2. []
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