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362 J. LOTT

5. UNIVERSAL COVERS

Suppose that M is the universal cover of a compact Riemannian manifold
X. We give M the pulled-back Riemannian metric and consider the Laplace-
Beltrami operator A, on M. There are numerical invariants derived from
{Ap}p>0, the so-called L>-Betti numbers {b{’(X)},>o and Novikov-Shubin
invariants {a,+1(X)},>0. The L*-Betti numbers lie in [0, co) and the Novikov-
Shubin invariants lie in [0, 00] U oco™. Here oo™ is a formal symbol which
should be considered to be greater than oco. Roughly speaking, b{”(X)
measures the size of Ker(A,) as a m(X)-module and a,,i(X) measures
the thickness near zero of the spectrum of A, on A?(M)/Ker(d); the larger
a,p+1(X), the thinner the spectrum near zero. We refer to [21, 22, 26] for the
definitions of these invariants. We will only need the following properties :

PROPERTIES.

bP(X) =0 <= Ker(A,) =0.

0¢ o(A, on AP(M)/Ker(d)) < 41 =o0T.

bP(X) and ,(X) are homotopy-invariants of X.

b (X), BP(X), ai(X) and ay(X) only depend on mi(X).
b?(X) = 0 if and only if 7(X) is infinite.

a1(X) = oo™ if and only if 7(X) is finite or nonamenable.

el B WA g B Re b

The Euler characteristic of X satisfies
(5.1) XG0 =) (~1y7 bPX)
p

8. If X" is closed then b\ (X) = bP(X).

9. If X* is closed then there are nonnegative numbers b(z) i(X) such that
b(z) X) = b(z) +(X) + b (X) and the signature of X satisfies

(5.2) T(X) = b5 L (X) — b5 _(X).

One can extend properties 1-7 from compact Riemannian manifolds X to
finite CW-complexes K.
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In what follows, I' will denote a finitely-presented group. Given a
presentation of I', there is an associated 2-dimensional CW-complex K
which we call the presentation complex. To form it, make a bouquet of circles
indexed by the generators of I'. Attach 2-cells based on the relations of
. (We allow trivial or repeated relations in the presentation.) This is the
presentation complex.

DEFINITION 7. Pur BP(T) = bP(K), bP(T) = bP(K), au(I) = ay(K)
and o(IN) = ay(K).

By Property 4 above, Definition 7 makes sense in that the choice of
presentation of I' does not matter.

As the invariants b3(I), BP(I), a;(I) and ay(T) will play an important
role, let us state explicitly what they measure. First, from Property 5, b(()2)(r)
tells us whether or not I' is infinite. In general, bg”(r) = T%—l Next, from

Property 1, b(lz)(F) tells us whether or not M has square-integrable harmonic
1-forms (or K has square-integrable harmonic 1-cochains). From Property 2,
a(I) tells us whether or not the Laplacian /Ay, acting on functions on M,
has a gap in its spectrum away from zero. In fact, Property 6 is just a
restatement of Corollary 3. Finally, from Property 2, a,(I') tells us whether
or not the spectrum of the Laplacian on A'(M)/Ker(d) goes down to zero.

5.1 BIG AND SMALL GROUPS

Let us first introduce a convenient terminology for the purposes of the
present paper.

DEFINITION 8. The group T is big if it is nonamenable, b(lz)(l“) =0 and
asr(I") = co™. Otherwise, T is small.

We recall that /A, denotes the Laplace-Beltrami operator on the universal
cover M.

PROPOSITION 11.  Let X and M be as above. The group m(X) is small
if and only if 0 € o(Ng) or 0 € a(/\)).

Proof. This follows immediately from Properties 1, 2, 4, 5 and 6 above. []

The question arises as to which groups are big and which are small. Clearly
any amenable group is small.
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PROPOSITION 12. Fundamental groups of compact surfaces are small.

Proof. Suppose that X is a compact surface and I' = m(Z). If £ has
boundary then I" is a free group F; on some number j of generators. If j =0
or j=1 then T is amenable. If j > 1 then HP(T) =j—1> 0.

Suppose now that X is closed. If x(X£) > 0 then I'" is amenable. If x(X) < 0
then bV = —x(X) >0. O

We now extend Proposition 12 to 3-manifold groups. We use some facts
about compact connected 3-manifolds Y, possibly with boundary. (See, for
example, [21, Section 6]). Again, all of our manifolds are assumed to be
oriented. First, ¥ has a decomposition as a connected sum Y = Y #Y,#...#Y,
of prime 3-manifolds. A prime 3-manifold is exceptional if it is closed and
no finite cover of it is homotopy-equivalent to a Seifert, Haken or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known and it is likely that
there are none.

PROPOSITION 13 (Lott-Luck). Suppose that Y is a compact connected
oriented 3-manifold, possibly with boundary, none of whose prime factors are
exceptional. Then m(Y) is small.

Proof. We argue by contradiction. Suppose that 7;(Y) is big. First, m(Y)
must be infinite. If Y has any connected components which are 2-spheres
then we can cap them off with 3-balls without changing m(Y). So we
can assume that 0Y does not have any 2-sphere components. In particular,
x(¥Y) = %X(c‘?Y) < 0. From [21, Theorem 0.1.1],

i 1
2) _ . . o
(5.3) by”(Y)=(r—1) ;:1 A x(Y).

As this must vanish, we have x(¥) =0 and either
1. {m@¥)|}t-, =42,2,1,...,1} or
2. A{|lm()| Y, = o0, 1,...,1}.
It follows that JY is empty or a disjoint union of 2-tori. As there are no

2-spheres in 9Y, if |m;(¥;)| =1 then Y; is a homotopy 3-sphere. Thus Y is
homotopy-equivalent to either

1. RP3#RP3 or

2. A prime 3-manifold Y’ with infinite fundamental group whose boundary
is empty or a disjoint union of 2-tori.
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If Y is homotopy-equivalent to RP3#RP® then 7;(Y) is amenable, which
is a contradiction. So we must be in the second case. Using Property 3, we
may assume that ¥ = Y’. Then as Y is prime, it follows from [24, Chapter 1]
that either Y = S' x D? or Y has incompressible (or empty) boundary. If
Y = S! x D? then m;(Y) is amenable. If Y has incompressible (or empty)
boundary then from (21, Theorem 0.1.5], a»(¥Y) < 2 unless Y is a closed
3-manifold with an R?, Rx S? or Sol geometric structure. In the latter cases,
I is amenable. Thus in any case, we get a contradiction. [

The next proposition gives examples of big groups.

PROPOSITION 14.
1. A product of two nonamenable groups is big.
2. If Y is a closed nonpositively-curved locally symmetric space of dimension

greater than three, with no Euclidean factors in Y, then m(Y) is big.

Proof. 1. Suppose that I' =T xI, with I'; and I, nonamenable. Then
I' is nonamenable. Let K; and K, be presentation complexes with fundamental
groups I'; and I, respectively. Put K = K; X K,. Then I' = m(K). Let
AP(IN{), AP(E) _and A[il?;) denote the Laplace-Beltrami operator on p-

cochains on K, K; and K;, respectively, as defined in Subsection 5.2 below.
Then

inf (o (A1(K))) =min(inf (o (A1(K)))) + inf (o (20(K2))),
inf (o (Lo(K))) + inf (0 (L1(K2)))) > 0.

Using Proposition 11, the first part of the proposition follows.

(5.4)

2. If Y is irreducible then part 2. of the proposition follows from the second
remark after Proposition 7. If Y is reducible then we can use an argument
similar to (5.4). [

REMARK. Let I' be an infinite finitely-presented discrete group with
Kazhdan’s property T. From [6, p. 47], H' (I'; () = 0. This implies that
I' is nonamenable and b(lz)(F) = 0. We do not know if it is necessarily true
that (') = co™.

5.2 TwO AND THREE DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
in combinatorial group theory. Let K be a finite connected 2-dimensional
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CW-complex. Let K be its universal cover. Let C*(INQ denote the Hilbert
space of square-integrable cellular cochains on K. There is a cochain complex

(5.5) 0 — C'K) 2 c'(K) 4 C2(K) — 0.

Define the Laplace-Beltrami operators by Ay = didy, L1 = dod} + did,
and A, = d;d} . These are bounded self-adjoint operators and so we can talk
about zero being in the spectrum of K.

PROPOSITION 15. Zero is not in the spectrum of K if and only if m(K)
is big and x(K) = 0.

Proof. Suppose that zero is not in the spectrum of K. From the analog
of Proposition 11, I' must be big. Furthermore, from Properties 1 and 7,
x(K) =0.

Now suppose that m;(K) is big and x(K) = 0. From the analog of
Proposition 11, 0 ¢ o(4Ay) and 0 ¢ o(A;). In particular, Ker(£y) =
Ker(A;) = 0. From Properties 1 and 7, Ker(A;) = 0. As C*K) =
Ker(A\;) & d; CY(K), we conclude that 0 ¢ o(N,y). O

Let I' be a finitely-presented group. Consider a fixed presentation of
I' consisting of g generators and r relations. Let K be the corresponding
presentation complex. Then x(K) = 1—g+r. Thus zero is not in the spectrum
of K if and only if m;(K) is big and g —r = 1.

Recall that the deficiency def(I') is defined to be the maximum, over all
finite presentations of I', of g —r. If b§2>(r) = 0 then from the equation

(5.6) X(K) =1—g+r=>bI) - b7 ([1) + b (K),

we obtain def(I') < 1. This is the case, for example, when I' is big or when
I" is amenable [5].

As any finite connected 2-dimensional CW-complex is homotopy-
equivalent to a presentation complex, it follows from Proposition 15 that
the answer to the zero-in-the-spectrum question is “yes” for universal covers
of such complexes if and only if the following conjecture is true.

CONJECTURE 1. If I is a big group then def(I') < 0.
REMARK. If 7;(K) has property T then the ordinary first Betti number of

K vanishes [6], and so x(K) = 1+ b,(K) > 0. Thus zero lies in the spectrum
of K.
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Now let Y be a 3-manifold satisfying the conditions of Proposition 1}. If
0Y + @, we define A, on Y using absolute boundary conditions on JY.

PROPOSITION 16. Zero lies in the spectrum of Y.

Proof. This is a consequence of Propositions 11 and 13. [

5.3 FOUR DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
about Euler characteristics of closed 4-dimensional manifolds.
If M is a Riemannian 4-manifold then the Hodge decomposition gives
(5.7) A(M) = Ker(No) @ A°(M)/ Ker(d),
A (M) = Ker(Ay) & dAY(M) & A'(M)/ Ker(d),
A2(M) = Ker(A,) @ dAYM) & «dAL(M),
A3(M) = x Ker(A)) @ *dA'(M) @ (A (M)/ Ker(d)),
A*(M) = x Ker(Ao) @ *(A°(M)/ Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(Ay),
Ker(/\)), J(Ao on AY/ Ker(d)), O'(Al on Al/Ker(d)) and Ker(A\,).

Let I" be a finitely-presented group. Recall that I' is the fundamental
group of some closed 4-manifold. To see this, take a finite presentation of
I". Embed the resulting presentation complex in R> and take the boundary of
a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with
fundamental group I'. Given X, we have y(X#CP?) = x(X) + 1. Thus it is
easy to make the Euler characteristic big. However, it is not so easy to make
it small. From what has been said,

{x(X): X is a closed connected oriented 4-manifold with
(5.8) mX)=T}={neZ:n>ql)}
for some ¢q(I’). A priori gI') € Z U {—oc0}, but in fact gI) € Z
[17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem

in 4-manifold topology to get good estimates of g(I').
Suppose that 7;(X) = I'. From Properties 4, 7 and 8 above,

(5.9) X(X) = 26(T) — 2630 + BP(X) .

In particular, if 5{’(I") = 0 then x(X) > 0 and so ¢(T)) > 0. This is the case,
for example, when I' is big or when T" is amenable [5].
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PROPOSITION 17. Let X be a closed 4-manifold. Then zero is not in the
spectrum of X if and only if m(X) is big and x(X) = 0.

Proof. Suppose that zero is not in the spectrum of X. Then from
Proposition 11, m;(X) must be big. Furthermore, Ker(A,;) = 0. From
Property 1 and (5.9), x(X) = 0.

Now suppose that 7(X) is big and x(X) = 0. From Proposition 11,
0¢ o(Lo) and 0 ¢ o(4\). From Property 1 and (5.9), Ker(A;) = 0. Then
from (5.7), zero is not in the spectrum of X. O

REMARK. If zero is not in the spectrum of X then it follows from
Property 9 that in addition, 7(X) = 0. Also, as will be explained later in
Corollary 4, if m(X) satisfies the Strong Novikov Conjecture then v, ([X])
vanishes in Hy(Bm;(X); C).

In summary, we have shown that the answer to the zero-in-the-spectrum
question is “yes” for universal covers of closed 4-manifolds if and only if
the following conjecture is true.

CONIJECTURE 2. If T is a big group then g(I') > 0.

We now give some partial positive results on the zero-in-the-spectrum
question for universal covers of closed 4-manifolds. Recall that there is a
notion, due to Thurston, of a manifold having a geometric structure. This
is especially important for 3-manifolds. The 4-manifolds with geometric
structures have been studied by Wall [32].

PROPOSITION 18. Let X be a closed 4-manifold. Then zero is in the
spectrum of X if

1. m(X) has property T or
2. X has a geometric structure (and an arbitrary Riemannian metric) or

3. X has a complex structure (and an arbitrary Riemannian metric).

Proof.

1. If X has property T then the ordinary first Betti number of X vanishes
[6]. Thus x(X) =2+ by(X) > 0. Part 1. of the proposition follows.

2. The geometries of [32] all fall into at least one of the following classes :
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a. bP #0: 5, $? x$?, CP2.

b. 0€o(Apon A/ Ker(d)) : R*, $* xR, §* x R?, Nil’ xR, Nil*, Solg,
Solt, Sol,

G b(lz) £0: 82 x H?.
d. 0€o(A; on A/Ker(d)) : H® xR, SL, x R, H? x R%.
e. x>0: H*, H?>xH?, CH>.

Part 2. of the proposition follows.

3. Suppose that zero is not in the spectrum of X. From Properties 7 and 9,
x(X) = 7(X) = 0. From the classification of complex surfaces, X has
a geometric structure [32, p. 148-149]. This contradicts part 2. of the
proposition. [

5.4 MORE DIMENSIONS

In this subsection we give some partial positive results about the zero-in-the-
spectrum question for covers of compact manifolds of arbitrary dimension.
Let us first recall some facts about index theory [18]. Let X be a closed
Riemannian manifold. If dim(X) is even, consider the operator d + d* on
A*(X). Give A*(X) the Z,-grading coming from (3.12). Then the signature
7(X) equals the index of d+ d*. To say this in a more complicated way, the
operator d+d* defines a element [d+d*] of the K-homology group Ko(X). Let
n : X — pt. be the (only) map from X to a point. Then n.([d+d*]) € Ko(pt.).
There is a map A : Ky(pt.) — Ko(C) which is the identity, as both sides are
Z. So we can say that 7(X) = A(n([d + d*1)) € Ko(C).

We now extend the preceding remarks to the case of a group action. Let
M be a normal cover of X with covering group I'. The fiber bundle M — X
is classified by a map v : X — BI', defined up to homotopy. Let d be exterior
differentiation on M. Consider the operator d+d*. Taking into account the
action of I" on M, one can define a refined index ind(3+3*) € Ko(Cr 1),
where C:T" is the reduced group C*-algebra of T .

We recall the statement of the Strong Novikov Conjecture (SNC) [18, 29].
This is a conjecture about a countable discrete group I', namely that the
assembly map A : K,(BI') — K,(C;T’) is rationally injective. Many groups
of a geometric origin, such as discrete subgroups of connected Lie groups or

Gromov-hyperbolic groups, are known to satisfy SNC. There are no known
groups which do not satisfy SNC.
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PROPOSITION 19. Let X be a closed Riemannian manifold with a surjective
homomorphism (X)) — I'. Let M be the induced normal T -cover of X.
Suppose that T satisfies SNC. Let L(X) € H*(X; C) be the Hirzebruch L-class
of X and let xL(X) € H.(X;C) be its Poincaré dual. Then if v,(xL(X)) # 0

in H.(BT';C), zero lies in the spectrum of M. In fact, 0 € o (A%@> if
dim(X) is even and 0 € & (Amg,ﬂ) if dim(X) is odd

Proof.  Suppose first that dim(X) is even. Suppose that zero does not lie
in the spectrum of M. Then the operator d+d* is invertible. (More precisely,
it 1s invertible as an operator on a Hilbert CT"-module of differential forms
on M.) This implies that ind(ﬁ + 2*) vanishes in Ko(C:T).

The higher index theorem says that

(5.10) ind(d + d*) = A(v.(ld + d*1)) .

Let Ac : Ko(BI) ® C — Ko(C:T) ® C be the complexified assembly map.
Using the isomorphism Ky(BI') @ C = H,yen(B1'; C), the higher index theorem
implies that in Ko(C'T) ® C,

(5.11) ind(d + d*)c = Ac (v« (xL(X))) .

By assumption, Ac is injective. This gives a contradiction.
Let T be the operator obtained by restricting d 4+ d* to

dim(X) dim(X) dlm(X)

AT (M) © AN (M) @ +dA™5 (M),

One can show that the other differential forms on M cancel out when
computing the rational index of d + d*, so T will have the same index

as d + d*. Then the same arguments apply to T to give 0 € o (A@>
If dim(X) is odd, consider the even-dimensional manifold X’ = X x S!

and the group I" = T" x Z. As the proposition holds for X', it must also hold
for X. [

COROLLARY 4. Let X be a closed Riemannian manifold. Let [X] €
Hyimx)(X; C) be its fundamental class. Suppose that there is a surjective
homomorphism 7 (X) — I' such that 1" satisfies SNC and the composite map
X — Bm(X) — BI sends [X] to a nonzero element of Hgime)(BL'; C). Let M

be the induced normal T -cover of X. Then on M, 0 € o (AQ@) if dim(X)
is even and 0 € o <A dim()zf)il) if dim(X) is odd.
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Proof. As the Hirzebruch L-class starts out as LX) = 1+ ..., its
Poincaré dual is of the form *L(X) = ...+ [X]. The corollary follows from
Proposition 19.  []

COROLLARY 5. Let X be a closed aspherical Riemannian manifold whose
fundamental group satisfies SNC. Then on X,0co <A(LZQ ) if dim(X) is

even and 0 € o (Ad,-,,,o?oil) if dim(X) is odd.

Proof. This follows from Corollary 4. [

EXAMPLES.
1. If X = T" then Corollary 5 is consistent with Example 2 of Section 2.

2. If X is a compact quotient of H*" then Corollary 5 is consistent with
Example 3 of Section 2.

3. If X is a compact quotient of H***! then Corollary 5 is consistent with
Example 4 of Section 2.

4. If X is a closed nonpositively-curved locally symmetric space then
Corollary 5 is consistent with the second remark after Proposition 7.

If X is a closed aspherical manifold, it is known that SNC implies that
the rational Pontryagin classes of X are homotopy-invariants [18] and that
X does not admit a Riemannian metric of positive scalar curvature [29].
Thus we see that these three questions about aspherical manifolds, namely
homotopy-invariance of rational Pontryagin classes, (non)existence of positive-
scalar-curvature metrics and the zero-in-the-spectrum question, are roughly all
on the same footing.

If X is a closed aspherical Riemannian manifold, one can ask for which
p one has 0 € o(4A,) on X. The case of locally symmetric spaces is
covered by the second remark after Proposition 7. Another interesting class
of aspherical manifolds consists of those with amenable fundamental group.
By [5], Ker(A,) =0 for all p. By Corollary 3, 0 € 0(4y).

PROPOSITION 20. If X is a closed aspherical manifold such that m(X)

has a nilpotent subgroup of finite index then 0 € o(A,) on X for all
p € [0,dim(X)].

Proof. First, X 1s homotopy-equivalent to an infranilmanifold, that is,
a quotient of the form I'\G/K where K is a finite group, G is the
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semidirect product of K and a connected simply-connected nilpotent Lie
group and I' is a discrete cocompact subgroup of G [12, Theorem 6.4].
We may as well assume that X = I'\G/K. By passing to a finite cover,
we may assume that K is trivial. That is, X is a nilmanifold. From
[27, Corollary 7.28], H?(X; C) = H’(g, C), the Lie algebra cohomology of g.
From [7], HP(g,C) # 0 for all p € [0,dim(X)]. Thus for all p € [0,dim(X)],
HP(X;C) #0.

Now let w be a nonzero harmonic p-form on X. Let m*w be its pullback
to X. The idea is to construct low-energy square-integrable p-forms on X
by multiplying 7*w by appropriate functions on X. We define the functions
as in [2, §2]. Take a smooth triangulation of X and choose a fundamental
domain F for the lifted triangulation of X. If E is a finite subset of 7{(X),
let xg be the characteristic function of H = [ gee 9 F. Given numbers
0 <€ <& <1, choose a nonincreasing function 1 € C§° ([O, oo)) which is
identically one on [0, ¢;] and identically zero on [e;, 0c0). Define a compactly-
supported function fg on X by fe(m) = w(d(m,H)) . Then there is a constant

C; > 0, independent of E, such that
(5.12) [ |dfs|> < C) area(OH) .
X

Define pg € AP(X) by pg = fg - mw. We have dpg = dfyg N 7w and
d*pg = —i(dfg) m*w. As fg is identically one on H, it follows that there is
a constant C > 0, independent of E, such that

Jz ldpel* + |d* pel] = area(OH)
Jz loel? =~ "Vol(H)

As m(X) 1s amenable, by an appropriate choice of E this ratio can be made
arbitrarily small. Thus 0 € o(4,). [

(5.13)

QUESTION. Does the conclusion of Proposition 20 hold if we only assume
that 7;(X) is amenable ?

6. TOPOLOGICALLY TAME MANIFOLDS

Another class of manifolds for which one can hope to get some nontrivial
results about the zero-in-the-spectrum question is given by topologically tame
manifolds, meaning manifolds M which are diffeomorphic to the interior of a
compact manifold N with boundary. If M has finite volume then Ker(4) # 0,
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