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260 A. M. HINZ

1. A FINITE ALPHABET

Although g is, compared with the trivially square-free sequence (k)^,
economic in the sense that it uses smaller numbers for any finite part, it is

unsatisfactory to depend on an infinite alphabet. Instead of considering df in
the Olive sequence, we now focus on (/M,yM), i.e. disregarding which disc is

involved, we concentrate on the ways the discs are moving. Of these there

are only six, namely

<**=(0,1), ß (1,2), 7 := (2,0), c*:=(l,0), 3 := (2,1), 7:= (0,2),

which will form the alphabet A := {a, /?,7,a, A 7}. J.-P. Allouche et al.

[2, Theorem 9] have shown that the sequence c := (zm,jm)men (named for
N. Claus de Siam, who described the recursive solution in [7]) is square-free

by recourse to the language of iterated morphisms. (For another interesting

property of this sequence see Allouche and F. Dress [3].) We give a direct

proof now, using only the following property of the TH itself :

Lemma. If ß 2r(2k + 1), r, k G No, then

in {(1 T r mod 2)kfi mod 3,

jfi — {(1 + r mod 2) (k + 1)} mod 3

Proof a) Let n G N be such that ß < 2n and put i t=s 0, j m 2 — n mod 2

in [13, Proposition 1]. Then, using r+ 1, we get

in {^(2 — n mod 2) (fin — r — 1) mod 2 + l)} mod 3

- {(1 + r mod 2) kfi mod 3

and similarly for j^.
b) As an alternative, we can prove this lemma directly by induction. Assume

it is true for I < ß < 2n, n G No, when n discs move from peg 0 to

peg 2 — n mod 2. Then fi — 2n is the move of disc n + 1 from 0 to
1 -b ft mod 2. For 2n < \i < 2n+1, discs 1 to ft are transferred from
2 — ft mod 2 to 1 + ft mod 2 ; hence move /i is the same as move ß — 2n

with 0,1,2 changed to 1,2,0, respectively, if n is odd, and to 2,0,1, if
ft is even. But then, since ß — 2n is divisible by the same power of 2 as

ß itself, we have ß — 2n 2r (2(k — 2n~r~l) + l), and the formulas follow
from ((1 + r mod 2)2n-r~1) mod 3 2 — n mod 2.

There are a couple of immediate consequences which we will need later :
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Corollary.
0) £ { a,ß, 7} r mod 2 0;
1) cM £ ({0,1,2} \[(2p)mod 3})h
ii) c„ a, ß, 7, ä, ß,7^ c2ß7, ß, ä, 7, ß, <*, respectively.

Proof, (o) is trivial; (i) and (ii) follow from

2ß (1 + r mod 2) (£ + 2),

1 -f (r + 1) mod 2 2(1 + r mod 2),

both taken modulo 3, respectively.

Remark. Another direct consequence of the Lemma is (cf. [3, p. 10]) :

a,/3,7,a,/?,7 «=>

Bs,leN0:-f=61+ 1,6/+3,6/+ 5,12/+10,12/+ 6,12/+ 2,
' u 45

7

respectively.

Our asymmetric choice of the first move being from 0 to 1 is here reflected

in having, in some sense, twice as many unbarred as barred symbols in c, as

remarked in [3, p. 13].

Now we can prove the result of Allouche et al. :

THEOREM 1. c is square-free.

Proof. Assume

3raeNo3/eN W E {m + 1.... m + /} : cv

If / is odd, then v and v + I have different parity. So every
v {m + 1,... m + 21} has an even number of factors 2 by Corollary (o).
Since of four consecutive numbers one has exactly one factor 2,1 can only
be 1. This, however, contradicts Corollary (i). Hence I must be even. But then,

by virtue of Corollary (ii), the same argument as in the proof of Theorem 0

applies.
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