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204 E. LEUZINGER

2. AN EXHAUSTION OF LOCALLY SYMMETRIC SPACES

Let X be a Riemannian symmetric space of noncompact type and rank > 2
and let I' be a non-uniform, torsion-free lattice in the group of isometries
of X. In this section we briefly describe the basic features of an exhaustion
of the locally symmetric space V = I''\X by Riemannian polyhedra, which
was previously constructed in [L2].

The idea i1s to work with a fundamental set 2 C X for the discrete
(arithmetic) group I'. Such “coarse” fundamental domains are provided by
reduction theory; they are finite unions of translates of so-called Siegel sets.
We begin with reviewing some facts about linear algebraic groups and set
up the notation. Roughly speaking, the lattice I" determines a “(J-structure”
on the real Lie group of isometries of X such that I'" is given by integer
matrices. The symmetric space X in turn inherits canonical parametrizations
adopted to this structure (generalized horocyclic coordinates). Siegel sets are
then defined with respect to such parametrizations.

2.1. REDUCTION THEORY AND GEOMETRY AT INFINITY

We denote by G the identity component of the group of isometries of X ;
it 1s a connected, semisimple Lie group with trivial center. We shall always
assume in the following that the non-uniform lattice I" is irreducible (see [R2]
5.20). Then, by the arithmeticity theorem of Margulis, there is a connected
semisimple linear algebraic group G defined over (), (D-embedded in a general
linear group GL(N,C), and a Lie group isomorphism p : G — G(R)? such
that p(I') is arithmetic, i.e. p(I') C G(Q) C GL(N, C) is commensurable with
the group G(Z) = GNGL(N,Z) (see [Z] 3.1.6 and 6.1.10). The symmetric
space X can be recovered as the manifold of maximal compact subgroups
of the identity component of the group G(R) = G NGL(N,R) of R-rational
points of G. For simplicity we will always identify G with G(R)® and T
with p(T).

Let S (resp. T) be a maximal @-split (resp. R-split) algebraic torus
of G, ie. a subgroup of G which is isomorphic over @ (resp. R) to
the direct product of ¢ (resp. r > ¢g) copies of C*. All such tori are
conjugate under G(Q) = G N GL(N,Q) (resp. G(R)) and their common
dimension ¢ (resp. r) is called the Q-rank (resp. R-rank) of G. The identity
component of S(R) (resp. T(R)) will be denoted by A (resp. Ap), the
corresponding Lie algebras by a (resp. ag). The R-rank of G coincides with
the rank of the symmetric space X, i.e. the maximal dimension of totally
geodesic flat subspaces. The choice of a maximal compact subgroup K of G
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is equivalent to the choice of a base point xo of X. We can choose K
with Lie algebra ¢ so that under the corresponding Cartan decomposition
g = t@p of the Lie algebra g of G we have a C ag C p = Ty X.
Here o is maximal abelian in P, i.e. the tangent space at Xxp of the
(maximal R-) flat Ag - xo in X. The pair of Lie algebras (g, ap) gives
rise to the root system r® of the symmetric space. Similarly there is a
system of Q-roots @ associated to the pair (g,a) (see [B3] §21). It is
always possible to choose orderings of (@ and g® such that the restrictions
of simple R-roots of g® to a are either simple Q-roots of @@, i.e. the

elements of a basis A = @A of @@, or zero (see [BT] 6.8). The basis

rA defines a closed R-Weyl chamber (10+ in ap and A then determines a

closed Q-Weyl chamber at = {H € a|a(H) >0, foral ac€ A} in a.
We set AT = expat (resp. g =expag ). A Q-Weyl chamber in X is a
translate of the basic chamber A+ - xy C AaL - xo. The elements of A are
differentials of characters (defined over Q) of the maximal Q-split torus S.
It is convenient to identify the elements of A also with such characters. When
restricted to A their values are denoted by a(a) (a € A,a € A). Notice that
AT ={acA|a(@)>1 forall acA}.

A closed subgroup P of G defined over Q is a parabolic Q-subgroup
if G/P is a projective variety (see [B3] §11). A parabolic Q-subgroup P of
G = G(R)" is by definition the intersection of G with a parabolic Q-subgroup
of G (see [BS]). The conjugacy classes under G (Q) of parabolic (Q-subgroups
are in one-to-one correspondence with the subsets ® of the (chosen) set A
of simple @Q-roots; they are represented by the standard parabolic Q-sub-
groups Pg of G (see [B3] §21.11). The corresponding standard parabolic
(QQ-subgroups of G are denoted by Pg. The minimal parabolic subgroup
P = Pz has a decomposition P = UMA, where U is unipotent and M
is reductive; A centralizes M and normalizes U (see [B1]). This yields a
(generalized) Iwasawa decomposition for G, i.e. G = P-K = UMAK , which
implies that P acts transitively on the symmetric space X. The intersection
of the maximal compact subgroup K of G with M is maximal compact
in M and the quotient Z = M/(K N M) is (in general) the Riemannian
product of a symmetric space of noncompact type by a (flat) Euclidean space.
Let 7: M — Z be the natural projection. Then the “horocyclic coordinate

i

map
p:Y=UXZXxA—X : (u,T(m),a) — Uma - X

is an isomorphism of analytic manifolds (see [BS] or [B2]).

e
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A generalized Siegel set S =S, » in X (relative to the -Weyl chamber
At - xg) is a subset of X of the form Sw,r = wA; - xp where w is relatively
compact in UM and, for 7 > 0, A, ={a €A | afa) > 7, a € A}. If
we define ag € A by a(ay) = 7 for all o € A, then A, = Ajag = A_+ao
and C = A, -xp C S is a (translate of a) (J-Weyl chamber in X. Siegel
sets provide the building blocks for (approximate) fundamental domains for
arithmetic groups. A subset Q C X is called a fundamental set for an arithmetic
group I' if the following two conditions hold

i) X=T-Q:
(i) for every g € G(Q) the set {y € T'| gQN~yQ # @} is finite.

The existence of fundamental sets is guaranteed by reduction theory for
arithmetic groups (see [B1] §13 and §15).

PROPOSITION 2.1 (Borel, Harish-Chandra). Let G be a semisimple al-
gebraic group defined over ) with associated Riemannian symmetric space
X = G/K. Let P be a minimal parabolic Q-subgroup of G and let T be
an arithmetic subgroup of G(Q). Then there exists a generalized Siegel set
S = S+ (with respect to AT -xy) such that, for a (fixed) set {g:|1 <i<m}
of representatives of the finite set of double cosets T\G(Q)/P(Q), the union

Q=" ¢S is a fundamental set (of finite volume) for T in X.

It will be useful in the sequel to dispose of geometric interpretations of
the above algebraic concepts and assertions.

First recall that the symmetric space X, as a Riemannian manifold of
nonpositive curvature, has an ideal boundary at infinity O.X. The latter
is defined as the set of equivalence classes of asymptotic geodesic rays
(see [BGS]). In the same way one also defines the ideal boundary at infinity
OsoV of V =T\X. If T is an arithmetic lattice in a group G of Q-rank
g = 1, the boundary 0.,V of the associated locally symmetric space consists
of m points (corresponding to the cusps), where m is as in Proposition 2.1.
For @-rank g > 2 it turns out that 0.,V is isomorphic to a finite simplicial
complex I'\|7|, a geometric realization of the Tits building of G modulo T
(see [JM] and [L1]). We recall the construction of the latter.

Let P be the set of all parabolic {)-subgroups of G. The conjugacy classes
of elements of PP are in one-to-one correspondence with the subsets © of the
set A of simple Q-roots. Every conjugacy class has a standard representative
denoted by Pg. One can show that the sets of double cosets I'\G(Q)/Pe(Q)
are finite for all ® (see [B1], §15.6). Let A = [ey,...,e,] C R? denote a
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standard geometric g—1 simplex (¢ = Q-rank of G). If A = {ay,... a4} and
A—0O={a;,...,a} with 1 <ip <...<ig < g, we define the boundary
simplex A(®) of A as A(®) = [e;y,. . ,e;,]. Let P be a minimal parabolic
Q-subgroup of G and let the set I'\G(Q)/P(Q) be 1‘epresemed by {q1,---Gm}
(see Proposition 2.1). We take m copies N = [el, ... ,eh] of A with faces
/N (®) corresponding to ©. The corresponding homeomorphlsms A~ /N are
denoted by ¢;. The simplicial complex I'\|7|, which provides a geometric
realization of the quotient of the Tits building of G modulo I', is constructed
from the simplices A!,...,A™ through the following incidence relations:

Two simplices A/ and A are pasted together along the faces /(@) and
A!(®) by the homeomorphism ¢; o gpl_l | Ay if and only if

I'qiPo(Q) = I'q/Pe(Q).

We remark that the points of I'\|7| are in one-to-one correspondence with
equivalence classes of geodesic rays in the locally symmetric space V = X
(see [Hat], [L1] and [IM]).

2.2. AN EXHAUSTION BY POLYHEDRA

We index the “edges” of the Weyl chamber at (or equivalently of AT x)
by simple (Q-roots. More precisely, the edges of At -x, are given by geodesic
rays cqo(f) = exp(tH,) - xo where H, € at, ||Hy|| = 1 and B(H,) = 0
for 6 # a (o, € A). We further write ¢, for the edges qrapc, of
the chambers ¢;C in the fundamental set € (see Section 2.1 for the notation).
If a geodesic ray ¢ represents a point z € 0,X we write z = c(c0). The
group G act naturally on 0,.X through g-c(c0) = (g-¢)(00). For every o € A
the isotropy group of c,(co) under that action coincides with the (maximal)
parabolic subgroups Pp_g,y introduced above (see [L2] Lemma 1.2).

To a geodesic ray c: [0,00) — X (parametrized by arc-length) which
represents a point z in the ideal boundary 0..X of X is associated a Busemann
function on X at z given by

he: X — R 5 he(x) = lim [d(x,c(n) —1].

The level sets of a Busemann function are horospheres, which foliate the
symmetric space. We denote the Busemann functions which correspond to the
rays Cro, by hy.. Note that Ay, (cka(t)) tends to —oo if the arc-length 7 of
the geodesic ¢, tends to +co.

In contrast to an exact fundamental domain there are not only points on the
boundary of a fundamental set Q but possibly also interior points which are
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