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§3. Presentations for F

Two presentations for F will be given in this section.

Now two groups F\ and F2 will be defined by generators and relations.

The generators A,F,X0,Xi,X2, • • • will be referred to as formal symbols, as

opposed to the functions defined above. Given elements x, y in a group,

[x,y] xyx~ly~1

Fx (A, B:[AB-\A-lBAl[AB-\A~2BA2})
F2 {X0,X1,X2,...:XpXnXk=Xn+1for

THEOREM 3.1. There exists a group isomorphism from F\ to F2 which

maps A to Xo and B to X1.

Proof There is a group homomorphism from the free group generated

by the formal symbols A and B to F2 such that A maps to Xo and B

maps to X\. This homomorphism is surjective because Xn Xf^^XiX1^1
for n > 2. To see that the defining relations of F\ are in the kernel of this

homomorphism, note that

Xf lX2Xi X0~lX2Xo and Xf 'X3Xi X0" 'X3Xo

hence

[XoXf1, X2]1 and [XoXf1, X3] 1,

hence

[X0X1-1,X0-1X1X0] 1 and 1.

Thus to complete the proof of Theorem 3.1 it suffices to prove that there
exists a group homomorphism from F2 to F\ which maps Z0 to A and X\ to
B. To prove this it in turn suffices, after setting 70 A and Yn A~(n_1)FA/2_1

for n > 1, to prove that

(3.2) YpYnYk Yn+l for

A closely related statement is that

(3.3) [A-lB,Ym\1 for

Lines (3.2) and (3.3) will be proved in this paragraph. To see that line
(3.3) is true for m 3 note that

[AB~\A~XBA] 1 =£> A~l[AB~l,A~XBA]A 1 => [B~lA,A~2BA2] 1

[A~lB,A~2BA2]1 =9- [A_1ß, y3] 1.
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The same argument gives line (3.3) for m — 4. The following equations show
that line (3.2) is true if line (3.3) is true for m — n — k + 2.

YnYk A~n+lBAn-lA-k+lBAk-1t=

A-k+2Yn-k+2A-lBAk-1 A-k+2A~lBYn_k+2Ak-]

A-k+xBAk-lA-k+lYn-k+1Ak-1 YkYn+l

Thus line (3.2) is true for every positive integer n and k — n— 1. In particular,
T3-1 T4T3 Y5. Because line (3.3) is true for m 3 and m — 4, it follows
that line (3.3) is true for m 5. An obvious induction argument now gives
line (3.3) for every m > 3. This proves lines (3.2) and (3.3).

The proof of Theorem 3.1 is now complete.

THEOREM 3.4. There exist group isomorphisms from F\ and F2 to

F which map the formal symbols A,X2,... to the corresponding
functions in F.

Proof Example 1.2 shows that the interior of the support of the function
AB~l in F is disjoint from the supports of the functions A~lBA, A~2BA2 in

F, and so the functions A, B in F satisfy the defining relations of F\. Thus

there exists a group homomorphism from F\ to F which maps the formal

symbols A, B to the corresponding functions in F. Corollary 2.6 shows that

this group homomorphism is surjective. Theorem 3.1 shows that this surjective

group homomorphism induces a surjective group homomorphism from F2

to F which maps the formal symbols Xo,X\,X2, •. • to the corresponding
functions in F. To prove Theorem 3.4 it suffices to prove that this latter

group homomorphism is injective.
It will be proved that this latter group homomorphism is injective in this

paragraph. The defining relations of F2 imply that

xpxn Xn+iXp,X~lXk XkX~y,XnXkfor

It follows that every nontrivial element x of F2 can be expressed as a positive
element times a negative element as in Corollary-Definition 2.7. If X\ occurs
in both the positive and negative part of x but Xk+\ occurs in neither, then

because XkXn+iXfl —Xn for n > k, it is possible to simplify x by deleting

one occurrence of X\ from both the positive and negative part of x and

replacing every occurrence of Xn+\ in x by Xn for n > k. Thus every
nontrivial element of F2 can be put in normal form as in Corollary-Definition
2.7. It follows from Corollary-Definition 2.7 that every nontrivial element of
F2 maps to a nontrivial element of F, as desired.

This proves Theorem 3.4.
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