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a. bP #0: 5, $? x$?, CP2.

b. 0€o(Apon A/ Ker(d)) : R*, $* xR, §* x R?, Nil’ xR, Nil*, Solg,
Solt, Sol,

G b(lz) £0: 82 x H?.
d. 0€o(A; on A/Ker(d)) : H® xR, SL, x R, H? x R%.
e. x>0: H*, H?>xH?, CH>.

Part 2. of the proposition follows.

3. Suppose that zero is not in the spectrum of X. From Properties 7 and 9,
x(X) = 7(X) = 0. From the classification of complex surfaces, X has
a geometric structure [32, p. 148-149]. This contradicts part 2. of the
proposition. [

5.4 MORE DIMENSIONS

In this subsection we give some partial positive results about the zero-in-the-
spectrum question for covers of compact manifolds of arbitrary dimension.
Let us first recall some facts about index theory [18]. Let X be a closed
Riemannian manifold. If dim(X) is even, consider the operator d + d* on
A*(X). Give A*(X) the Z,-grading coming from (3.12). Then the signature
7(X) equals the index of d+ d*. To say this in a more complicated way, the
operator d+d* defines a element [d+d*] of the K-homology group Ko(X). Let
n : X — pt. be the (only) map from X to a point. Then n.([d+d*]) € Ko(pt.).
There is a map A : Ky(pt.) — Ko(C) which is the identity, as both sides are
Z. So we can say that 7(X) = A(n([d + d*1)) € Ko(C).

We now extend the preceding remarks to the case of a group action. Let
M be a normal cover of X with covering group I'. The fiber bundle M — X
is classified by a map v : X — BI', defined up to homotopy. Let d be exterior
differentiation on M. Consider the operator d+d*. Taking into account the
action of I" on M, one can define a refined index ind(3+3*) € Ko(Cr 1),
where C:T" is the reduced group C*-algebra of T .

We recall the statement of the Strong Novikov Conjecture (SNC) [18, 29].
This is a conjecture about a countable discrete group I', namely that the
assembly map A : K,(BI') — K,(C;T’) is rationally injective. Many groups
of a geometric origin, such as discrete subgroups of connected Lie groups or

Gromov-hyperbolic groups, are known to satisfy SNC. There are no known
groups which do not satisfy SNC.
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PROPOSITION 19. Let X be a closed Riemannian manifold with a surjective
homomorphism (X)) — I'. Let M be the induced normal T -cover of X.
Suppose that T satisfies SNC. Let L(X) € H*(X; C) be the Hirzebruch L-class
of X and let xL(X) € H.(X;C) be its Poincaré dual. Then if v,(xL(X)) # 0

in H.(BT';C), zero lies in the spectrum of M. In fact, 0 € o (A%@> if
dim(X) is even and 0 € & (Amg,ﬂ) if dim(X) is odd

Proof.  Suppose first that dim(X) is even. Suppose that zero does not lie
in the spectrum of M. Then the operator d+d* is invertible. (More precisely,
it 1s invertible as an operator on a Hilbert CT"-module of differential forms
on M.) This implies that ind(ﬁ + 2*) vanishes in Ko(C:T).

The higher index theorem says that

(5.10) ind(d + d*) = A(v.(ld + d*1)) .

Let Ac : Ko(BI) ® C — Ko(C:T) ® C be the complexified assembly map.
Using the isomorphism Ky(BI') @ C = H,yen(B1'; C), the higher index theorem
implies that in Ko(C'T) ® C,

(5.11) ind(d + d*)c = Ac (v« (xL(X))) .

By assumption, Ac is injective. This gives a contradiction.
Let T be the operator obtained by restricting d 4+ d* to

dim(X) dim(X) dlm(X)

AT (M) © AN (M) @ +dA™5 (M),

One can show that the other differential forms on M cancel out when
computing the rational index of d + d*, so T will have the same index

as d + d*. Then the same arguments apply to T to give 0 € o (A@>
If dim(X) is odd, consider the even-dimensional manifold X’ = X x S!

and the group I" = T" x Z. As the proposition holds for X', it must also hold
for X. [

COROLLARY 4. Let X be a closed Riemannian manifold. Let [X] €
Hyimx)(X; C) be its fundamental class. Suppose that there is a surjective
homomorphism 7 (X) — I' such that 1" satisfies SNC and the composite map
X — Bm(X) — BI sends [X] to a nonzero element of Hgime)(BL'; C). Let M

be the induced normal T -cover of X. Then on M, 0 € o (AQ@) if dim(X)
is even and 0 € o <A dim()zf)il) if dim(X) is odd.
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Proof. As the Hirzebruch L-class starts out as LX) = 1+ ..., its
Poincaré dual is of the form *L(X) = ...+ [X]. The corollary follows from
Proposition 19.  []

COROLLARY 5. Let X be a closed aspherical Riemannian manifold whose
fundamental group satisfies SNC. Then on X,0co <A(LZQ ) if dim(X) is

even and 0 € o (Ad,-,,,o?oil) if dim(X) is odd.

Proof. This follows from Corollary 4. [

EXAMPLES.
1. If X = T" then Corollary 5 is consistent with Example 2 of Section 2.

2. If X is a compact quotient of H*" then Corollary 5 is consistent with
Example 3 of Section 2.

3. If X is a compact quotient of H***! then Corollary 5 is consistent with
Example 4 of Section 2.

4. If X is a closed nonpositively-curved locally symmetric space then
Corollary 5 is consistent with the second remark after Proposition 7.

If X is a closed aspherical manifold, it is known that SNC implies that
the rational Pontryagin classes of X are homotopy-invariants [18] and that
X does not admit a Riemannian metric of positive scalar curvature [29].
Thus we see that these three questions about aspherical manifolds, namely
homotopy-invariance of rational Pontryagin classes, (non)existence of positive-
scalar-curvature metrics and the zero-in-the-spectrum question, are roughly all
on the same footing.

If X is a closed aspherical Riemannian manifold, one can ask for which
p one has 0 € o(4A,) on X. The case of locally symmetric spaces is
covered by the second remark after Proposition 7. Another interesting class
of aspherical manifolds consists of those with amenable fundamental group.
By [5], Ker(A,) =0 for all p. By Corollary 3, 0 € 0(4y).

PROPOSITION 20. If X is a closed aspherical manifold such that m(X)

has a nilpotent subgroup of finite index then 0 € o(A,) on X for all
p € [0,dim(X)].

Proof. First, X 1s homotopy-equivalent to an infranilmanifold, that is,
a quotient of the form I'\G/K where K is a finite group, G is the
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semidirect product of K and a connected simply-connected nilpotent Lie
group and I' is a discrete cocompact subgroup of G [12, Theorem 6.4].
We may as well assume that X = I'\G/K. By passing to a finite cover,
we may assume that K is trivial. That is, X is a nilmanifold. From
[27, Corollary 7.28], H?(X; C) = H’(g, C), the Lie algebra cohomology of g.
From [7], HP(g,C) # 0 for all p € [0,dim(X)]. Thus for all p € [0,dim(X)],
HP(X;C) #0.

Now let w be a nonzero harmonic p-form on X. Let m*w be its pullback
to X. The idea is to construct low-energy square-integrable p-forms on X
by multiplying 7*w by appropriate functions on X. We define the functions
as in [2, §2]. Take a smooth triangulation of X and choose a fundamental
domain F for the lifted triangulation of X. If E is a finite subset of 7{(X),
let xg be the characteristic function of H = [ gee 9 F. Given numbers
0 <€ <& <1, choose a nonincreasing function 1 € C§° ([O, oo)) which is
identically one on [0, ¢;] and identically zero on [e;, 0c0). Define a compactly-
supported function fg on X by fe(m) = w(d(m,H)) . Then there is a constant

C; > 0, independent of E, such that
(5.12) [ |dfs|> < C) area(OH) .
X

Define pg € AP(X) by pg = fg - mw. We have dpg = dfyg N 7w and
d*pg = —i(dfg) m*w. As fg is identically one on H, it follows that there is
a constant C > 0, independent of E, such that

Jz ldpel* + |d* pel] = area(OH)
Jz loel? =~ "Vol(H)

As m(X) 1s amenable, by an appropriate choice of E this ratio can be made
arbitrarily small. Thus 0 € o(4,). [

(5.13)

QUESTION. Does the conclusion of Proposition 20 hold if we only assume
that 7;(X) is amenable ?

6. TOPOLOGICALLY TAME MANIFOLDS

Another class of manifolds for which one can hope to get some nontrivial
results about the zero-in-the-spectrum question is given by topologically tame
manifolds, meaning manifolds M which are diffeomorphic to the interior of a
compact manifold N with boundary. If M has finite volume then Ker(4) # 0,




	5.4 More Dimensions

