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3. Valeurs moyennes de /, / et /
Soit / une fonction arithmétique. S'il existe une fonction continue

monotone g définie sur [1, + oo[ et telle que £ f(n) ~ £ g(n), lorsque
n ^ x n ^ x

x oo, on dit que g est une valeur moyenne (ou un ordre moyen) de /.
On dit qu'une fonction mesurable R : [2, + oo[ -> R+ est une fonction à

variation régulière s'il existe un nombre réel p ^ 0 tel que pour chaque a > 0

R(ax)
on a lim ap. Compte tenu de la nature des applications consi-

X-oo R(x)
dérées ci-dessous, nous n'étudions que les fonctions continûment dérivables à

variation régulière. Si p 0, on dit que R est à oscillation lente. Désignons

par j5f l'ensemble des fonctions continûment dérivables à oscillation lente.

On peut montrer (voir le livre de Seneta [7], p. 2) que toute fonction à

variation régulière R peut s'écrire sous la forme R(x) xpL(x), où p e R
et L e /. Il est démontré dans Seneta ([7], p. 7) que L e & si et seu-

xZ/(x)
lement si o(l) lorsque x oo. Nous utiliserons l'expression fonction

L(x)
régulière pour signifier fonction à variation régulière. Si la fonction g ci-dessus

est régulière, on dit que la fonction arithmétique / possède une valeur

moyenne régulière.

Voyons maintenant dans quel sens on pourra dire que la valeur moyenne
régulière de / est unique. D'abord signalons que si / possède deux valeurs

moyennes monotones régulières R et S alors R et S sont asymptotiquement

équivalentes. En effet, soit R(x) xPlL{ (x) et S(x) xp2L2(x) (où Lx

et L2 sont deux fonctions à oscillation lente) telles que, lorsque x-^ oo,

z f(n)~x~l£R(n)et £ £
n ^ x n ^ x n ^ x n ^ x

On ne restreint pas la généralité en supposant p1(p2> - 1. On

a alors £ «p'Li(rc) ~ £ np^L2{n), et il s'ensuit que | tp^Lx{t)dt
n ^ x n ^ x J 1

fix

~ I tp2L2(t) dt. En utilisant un résultat classique dû à Karamata (voir

Bingham, Goldie and Teugels [2], p. 26), on en déduit que

xPl + 1 xp2 + 1 Pi + 1 L\{x)
Li(x) L2{x) et ainsi que xpi~P2

Pi + 1 P2 + 1 P2 + 1 L2(x)
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Mais puisque Lx et L2 e i5f, il vient
pi + 1 L\ (x)

p2 + 1 L2(x)
xo(1), ce qui permet

de conclure que pi p2 + o(l) c'est-à-dire Pi — P2, ce qui implique

R(x) ~ S (x) lorsque x -* 00.

Compte tenu de ces observations, on peut considérer que la valeur moyenne

régulière, lorsqu'elle existe, d'une fonction arithmétique / est unique.

Dans un tel cas, c'est donc sans ambiguïté qu'on désignera sa valeur moyenne

régulière par VM(f).

Théorème 3.1. Soit f e F~jd. Alors:

(i) la fonction f possède une valeur moyenne si et seulement si la
A

fonction f en possède une;

(ii) la fonction f possède une valeur moyenne si et seulement si la

fonction f en possède une.

De plus, si l'une ou l'autre de ces valeurs moyennes existe et est régulière, on a

Démonstration. Les parties (i) et (ii) ainsi que les égalités (3.1) découlent
immédiatement du fait que / f \f pour toute fonction / e éF.sd.

Théorème 3.2. Soit f e F~sd telle que f{p) R(p) pour chaque
nombre premier p, où R est une fonction continûment dérivable à

variation régulière non décroissante qui possède la représentation R(x)
xpL(x), avec p ^ 0 et L e S. Alors la valeur moyenne régulière

de la fonction f existe si et seulement si celle de la fonction f existe,

auquel cas

Avant d'entreprendre la démonstration du théorème 3.2, nous établissons
d'abord un lemme d'intérêt général qui s'avère crucial pour la démonstration
de ce théorème.

Lemme 3.3. Soit <p: [1, + oo[- R+ une fonction continue non
décroissante telle que limx^oo(p(x) +00. Alors

(3.1) VM(f) 2 VM(f) 2 VM(f)

(3.2) VM(f) 2 VM(f)

r*«,,,I — dt ^ o((p(x))
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Démonstration. Soit (p une fonction satisfaisant les hypothèses du
lemme. Pour tout x assez grand, on pose

y(x):= infO'rtpO') ]/(p.
Il est clair que lim^oo^x) + oo.

Puisque (p est non décroissante on a

|*<P(0 dt
>y(x)

(p (0 dt +
(p (t) dt < (p(y(x))

y M

[Ax) dt f' dt
71+(p(x) 71Jl 1 Jy(x) 1

< l/<p(*)(1 —7—}
\ jW/

+ <p(x)

+ cp(x)

(j_.aUW xf

f— -1)
\y(x) xj

< ]/cp(x) + o(tp(x))
y(x)

car limx_>ooy(x) + 00, ce qui complète la preuve du lemme 3.3.

Démonstration du théorème 3.2. D'abord, puisque / e &
facile d'établir que

il est

(3.3) E fi") E
n ^ x p ^ x

E Riß)
p x

Par ailleurs, toujours parce que / g éFsd, on a

fin) E ——~fiP)= E t~^—RiP)
:?<* Il n 1 + CL va\\n 1 + (X

ce qui permet d'écrire

^ 01 (a a — 1 \
E fin)*E E ~—Rip)= E E It U(P)

n ^ x n^xpa\\nl~\~ CL n ^ x pa \ n \i. CL CL J
a ^ 1

~EE *(/>)+ E E
1

2, n ^ x p \ n n ^ x pa\n (X ((X + 1)
a ^ 2

et donc d'obtenir

1

(3.4) E /(«) r E
n x 2 p ^.x

+ E
a(l + a)

a ^ 2

*(/>)
X

p\
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Considérons d'abord le cas où la fonction R(x) xpL(x) est telle

que p 0. On a alors

(3.5) £ R(p)
p ^ X

E Up)
P ^ x P^X P

(E
\P^x

L(P)

Or, en utilisant le théorème des nombres premiers sous la forme

n (x)
logx

L(p)

+ fe)' on a

Pix p

(3.6)

L(t) ^ ^ L{t) ^dn(t) n(t) n
d (L)

dt
dt

Ljx)
| 0(L{x)\

logx

L(x)

où T|(t) :

logx
tL'(t)
W)

+

log2x

tuu
\log2x

+ (1 + 0(1)) | -L^j-
2 lOg t t2

1 - tL'jt))
Ut)

dt

j +(l + o(l)) j W)
t log t

(1 - ri (tj)dt

0 lorsque t -> oo, puisque Le i5f. Or, étant donné une

fonction Me âf, il a été démontré par De Köninck et Mercier ([3], lemme 3)

que

*"M{t)
M(x) o (î; dt

En utilisant ce résultat avec M(x) (3.6) devient

(3.7) I —*=(1 + 0(1))
P^X P

W)
tlog t

dt

o x

(3.8)

Puisque le terme d'erreur O | Y L(p)^ qui apparaît dans (3.5) est

(x L(t) \
dt\, la relation (3.3) devient

t log t J

I fin)=(1 + o(l))x7V(x)

r LLd,
j2 ti°gt

où N(x) :

Par ailleurs il est clair que



110 J.-M. DE KÖNINCK ET J. GRAH

(3.9)
ptt a(a + 1)

a ^ 2

L(p)
Pa

< X
L(p)

P
a ^ 2

Enfin, puisque L est non décroissante, on a

f* L(t)
N(x) —— dt ^ L(2)

J2 tlogt
L (2) log log x + 0( 1)

dt

2 t lOg t
+ oo lorsque x -

dt

En combinant alors (3.3), (3.4), (3.5), (3.8) et (3.9), on obtient le résultat,
incluant l'égalité (3.2), dans le cas où R L e S7.

Il reste à considérer le cas où R(x) xpL(x), avec p > 0. Comme

x - 1 < [x] ^ x, on a

1 ^ (x- E R-
2 p ^ x \p

< - E
X p ^ x

v R(P)

P ^ X P

et donc

1 1

iW ER(P)
X p x X p x

Or en utilisant les représentations

< \|/(x)

E
P ^ X

R(p) R(t)
dn(t) et E R(

p ^ x
R(t)dn(t)

et en utilisant le théorème des nombres premiers, tout comme on l'a fait
dans le cas R(p) L{p) ci-dessus, on établit que, lorsque x~> oo,

\j/(x)
xp L(x)
P logx

et - E R(p)
X p x

xp L(x)
p + 1 logx

de sorte que les trois quantités \]/(x), - ^xR(p) et \|/(x) - l-%p ^xR(p)
sont du même ordre de grandeur. Ainsi, compte tenu des relations (3.3)
et (3.4), la démonstration sera terminée si l'on peut démontrer que le deuxième

terme à droite de (3.4) est o(x\j/(x)). Le résultat sera donc démontré si

l'on arrive à établir l'implication générale suivante:

T(n) ^ 0, (p(x) —> -i- oo, S(x):= £ T(n) ~ cp(x)

(3-l°> y T(n)
=> 2. o((p(x))
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Or cette dernière somme peut s'écrire comme suit:

E £ »<>ÎIW(!._L)(M
n ^ x 72 n^x 77 n ^ x \77 77+1/ [Y*] + 1

E + o(<p(x)) ~ f + o(cp(x))
mxn(n +1) Ji

Ainsi compte tenu de (3.11), l'implication (3.10) est une conséquence

immédiate du lemme 3.3. Ceci termine la démonstration du théorème 3.2.

R. L. Duncan a montré (voir [4]) qu'en moyenne, la moyenne de co sur les

diviseurs de n est égale à \ log log«. Plus précisément Duncan a démontré

qu'il existe une constante c telle que

x~' X (—!— X CO (g?) I X-1E ®(«) - loglogx {—î— |
„ix\t(w) d\n I nix 2 \10gX/

A cette fin, Duncan a utilisé la relation asymptotique bien connue

(3.12)

„ „ „ X 1

y log log X + Cx + 0(x/\ogx)E CO (n)E E i E
n ^ x n ^ x p\n p < x

où C:= y+ Y<p (log(l - p~l) + et y est la constante d'Euler. Bien
plus encore, Duncan a établi l'égalité des ordres normal et moyen de cö(tz).

Etant donné / e F, il est naturel d'examiner le comportement de la
suite /,/,/,... Ainsi, pour un entier non négatif m fixé, on considère
l'itération Tm définie par

TmU)r(fm_,(/))
où Ti T, T0(f) /, et où

(«) -E E (/)) (</),«> 1

T(n) d|„

Pour simplifier la notation, on désigne par /,„ l'image de / par T,,,, i.e.
^m(/) /m - Nous définissons de même les itérations /,„ et /„, et obtenons
alors par induction sur m,comptetenu des propriétés de T, T et f,l'énoncé
suivant.

Théorème 3.4. Soit m un entier non négatif et f une fonction
arithmétique. Alors Tm,TmetTm préservent l'additivité et la multi-
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~ A

plicativité. En particulier si f e sd alors fm{n) f(n)/2m et fm(n)
/(ô(«))/2mv Lorsque fe ïïsd, fm(n) f(n)/2m. Enfin

si fe jaf, fm(n) fm(.n)/(«)/ 2mf(5(n))/2m.

Afin de généraliser le résultat de Duncan, nous aurons besoin du lemme
suivant qui est facile à démontrer.

Lemme 3.5. Soit f e <sd. Supposons que f est constante sur
l'ensemble & des nombres premiers et qu'elle satisfait à f (pr) - f (pr~l)

0(1) uniformément pour p premier et r ^ 2. Alors les expressions

fm(Pr) - fm(Pr'1), fm(Pr) - fmip1"1) et fm(pr) ~ fm(pr ~ l) SOUt

également bornées uniformément pour p premier et r ^ 2. De plus les

fonctions fm, fm et fm sont constantes sur ZP.

A chaque fonction g constante sur ^ on associe les constantes suivantes

+ ^ T r S(Pr) -cg:=g(2) et Dg:=cgC+ )_
r>2 p Pr

où C est la constante de la relation (3.12).

Théorème 3.6. Soit f une fonction additive satisfaisant les

hypothèses du lemme 3.5. Alors

x'1 E fm(n) loglogx + Dfm+ O(l/logx),
n < x 2

X'1 T, fm(n) —X-1T ®(«) — loglogx + — C + 0(l/logx),
9 m "v 9 m 9 m

n < x xL, n ^ x

X'x y fm(n) — log log X + + 0(1 /logw 9 m 9 m
n fi x ^ X-*

Démonstration. Si g e -sd et est constante sur on a

x-' y g(n)X-1 x Z g(p r) xy y (g(pr)-g(pr~'))
n ^ x n ^ x pr\\n n ^ x pr\n

x-'cg y
P ^ x

+ x~i E (g(pr
Pr ^ X

2

X

P"

Alors la relation (3.12) et le lemme 3.5 permettent d'obtenir les égalités du

théorème si on prend soin de remplacer successivement g par fm, fm et fm.
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Exemple. Si f(n) logx(rt) et m 1, alors

- log 2 log 2
Yé f(n) log logx + - C

n 2 2

+ E E -+ o(i/iog*).
r»i p r(r +l)pr\r\

— A ~
4. Mesure de l'écart entre / et les moyennes /, / et /

Nous allons étudier le moment d'ordre deux (selon le sens des définitions
- A ~ — A —

des moyennes /, / et /) de l'écart entre f(n), f(n) et f(n) et les valeurs
de / sur les diviseurs de n.

Etant donné une fonction arithmétique /, on lui associe les trois
opérateurs

À/(«):= ~£ (fi
T (n) d\n

Af(n):=-i_ £ y id
2œ("> d\n

Ä/(n):=^ ^ (fid)~ fin))2.
2œ("' d\n

(d, n/d) 1

Ainsi on remarque que

Afin)-/- £ { fid)2+ - 2f(h)f(d)
T(n) d | n

~
1

1 fid)2 + fin)2-2^ ^ f{d)
d | n T (n) d\n

1

I fid)2-fin)ï(n) d | n

et donc que

(4.1) Â/(az) —— Yé f(d)2 ~ f(n)2 - /2(n) - f(n)2,
X (/?) d | n

(4.2) Â/(n) £ Yid)fid)2 - /(«)2 /2(n) - /(„)2>^ | n

(4.3) Ä/(n) £ f(d)2-hny=f\ri)-f{ny.^ d\n
(d, n/d) 1
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