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106 J.-M. DE KONINCK ET J. GRAH

o A —~
3. VALEURS MOYENNES DE f, f ET f

Soit f une fonction arithmétique. S’il existe une fonction continue
monotone g définie sur [1, + oo et telle que Z f(n) ~ Z g(n), lorsque

n<x n<x

Xx = oo, on dit que g est une valeur moyenne (ou un ordre moyen) de f.
On dit qu’une fonction mesurable R: [2, + o[ > R* est une fonction a
variation réguliére s’il existe un nombre réel p > 0 tel que pour chaque @ > 0

R(ax
(@) = gf. Compte tenu de la nature des applications consi-

on a lim
s~ R(X)

dérées ci-dessous, nous n’étudions que les fonctions contintiment dérivables a
variation réguliere. Si p = 0, on dit que R est a oscillation lente. Désignons
par < D’ensemble des fonctions continiment dérivables & oscillation lente.
On peut montrer (voir le livre de Seneta [7], p. 2) que toute fonction a
variation réguliere R peut s’écrire sous la forme R(x) = x°?L(x), ou p € R
et L € . Il est démontré dans Seneta ([7], p. 7) que L € &£ si et seu-
L’ (x)
L(x)
réguliere pour signifier fonction a variation réguliere. Si la fonction g ci-dessus
est réguliere, on dit que la fonction arithmétique f possede une valeur
moyenne régulicre.

lement si = 0(1) lorsque x = o. Nous utiliserons I’expression fonction

Voyons maintenant dans quel sens on pourra dire que la valeur moyenne
réguliére de f est unique. D’abord signalons que si f posséde deux valeurs
moyennes monotones réguliéres R et S alors R et S sont asymptotiquement
équivalentes. En effet, soit R(x) = xP1L;(x) et S(x) = xP2L,(x) (ou L,
et L, sont deux fonctions & oscillation lente) telles que, lorsque x — oo,

x 'Y fm)~x-'' Y R(n) et x ') f(n)~x-' ) S(n).

n<x n<x n<x n<x

On ne restreint pas la généralité en supposant p;,p, > — 1. On

a alors Y, neiL;(n) ~ Y nP2L,(n), et il s’ensuit que 5 tp1 L (t)dt

n<x n<x 1

X
~ j tP2L,(t)dt. En utilisant un résultat classique di a Karamata (voir
1

Bingham, Goldie and Teugels [2], p. 26), on en déduit que

xPitl xP2tl . _ p1+1 L;{x)
Li(x)~ L,(x) et ainsi que xP1~P2 ~ .
p1 + 1 p2 + 1 Py + 1 LZ(X)
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. : o pr +1 Li(x) o(1) .
Mais puisque L, et L, € &, il vient = x°), ce qui permet
pr + 1 La(x)

de conclure que p; = p, + o(l) c’est-a-dire p; = pa, C€ qui implique
R(x) ~ S(x) lorsque x = .

Compte tenu de ces observations, on peut considérer que la valeur moyenne
réguliere, lorsqu’elle existe, d’une fonction arithmétique f est unique.
Dans un tel cas, ¢’est donc sans ambiguité qu’on désignera sa valeur moyenne
réguliére par VM (f).

THEOREME 3.1. Soit fe 7./. Alors:

(i) la fonction f posséde une valeur moyenne si et seulement si la
A
fonction [ en possede une;

(ii) la fonction [f posséde une valeur moyenne si et seulement si la
fonction f en posséde une.

De plus, si lI’'une ou ’autre de ces valeurs moyennes existe et est réguliéere, on a

3.1) VM(f) = 2VM(f) = 2VM(f) .

Démonstration. Les parties (i) et (ii) ainsi que les égalités (3.1) découlent
A ~
immédiatement du fait que f= f = -;— f pour toute fonction f € .7 .«/.

THEOREME 3.2. Soit f e 7.« telle que f(p)= R(p) pour chaque
nombre premier p, ou R est une fonction continiiment dérivable a
variation réguliere non décroissante qui posséde la représentation R (x)
=x°?L(x), avec p>=0 et L e & Alors la valeur moyenne réguliére

de la fonction [ existe si et seulement si celle de la fonction [ existe,
auquel cas

(3.2) VM(f) = 2VM(S) .

Avant d’entreprendre la démonstration du théoréme 3.2, nous établissons

d’abord un lemme d’intérét général qui s’avere crucial pour la démonstration
de ce théoréme.

LEMME 3.3. Soit ¢:[l, + o[> R* une fonction continue non
décroissante telle que lim,_ ,@(x) = +o. Alors

Yot
s 20 dr = o(ox)

1
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Démonstration. Soit ¢ une fonction satisfaisant les hypothéses du
lemme. Pour tout x assez grand, on pose

y(x):=inf{y:0(y) = Vo(x)}.

Il est clair que lim, -, y(x) = + oo.
Puisque ¢ est non décroissante on a

x ¢ y(x) X y(x) d X dt
s elf) =s wdws %thgm(y(X))s t—f+(p(X)§ —
y(x)

1 1 r? 1 y(x) t?
1 1 1
= 1] - — - _
Pr) ( e )) e (y(x) x)
1 1 1
< Vo(x) (1 - ——) + 0(x) (—— - ~)
y(x) y(x) x

o(x) + P _ o(p(x) ,
y(x)

car lim,- . y(x) = + o, ce qui complete la preuve du lemme 3.3.

DEMONSTRATION DU THEOREME 3.2. D’abord, puisque f € ¥ 7, il est
facile d’établir que

X X
(3.3) Y f(my= Y f(p) [—] = )Y R(p) [—] :
n<x p<x D p<x D
Par ailleurs, toujours parce que f € . <7, on a

fn)y=Y )

plln1 pllﬂ1

ce qui permet d’écrire

Y fn ) - ¥ ¥ (lm—a;l)R(p)

n<x n<x polin 1+ Q n<x pein
a=1

1
— — R ——s ]
2 nz<:x pzn (p) " ngx p%n (1((1 + 1) (p)
a=2

et donc d’obtenir

_ 1 1
B4 Y fm)==Y R(p F] + Y —R
2 p pe<x a(l

n<x p<Xx +(X)

p(l

oa>2
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Considérons d’abord le cas ou la fonction R(x) = xPL(x) est telle
que p = 0. On a alors

L
3.5 Y R(p) [il = ) L(p) [ﬁ] =x ) L) +0( ) L(p))-
p<x p p<x p p<x D p<X

Or, en utilisant le théoréme des nombres premiers sous la forme

Tt(x)z—x—+0( * ),ona

log x log?x

Lip) (YL L(?) <[ d (L(t))
“M ) 222 4dn(t) = —2 n(¢t - ) — |—) dt
P 5 O R R Chr o
P x LI
36 =9 oI L areay| A ED (1 ! (t)) dt
log x \log?x Jologt 12 L(1t)
L L o (EM) L as ey | B G mnyar,
log x log?x J, tlogt
‘ tL’'(1) . . .
oun(z):= — 0 lorsque ¢ — o, puisque L € <. Or, étant donné une

L(?)
fonction M € &, il a été démontré par De Koninck et Mercier ([3], lemme 3)

que
M)
M(x) = o (§ —t—dz) .

2

En utilisant ce résultat avec M (x) = £ (3.6) devient

logx ?

3.7) y Lp) =(1+o(l))s L@ ..
D

p<x , tlogt

Puisque le terme d’erreur O( D L(p)) qui apparait dans (3.5) est

pP<Xx

*L(1) . .
ol|x dt|, la relation (3.3) devient
, tlogt?

(3.8) Y f(m)=(1+0Q)xN(x),

n<x

T L)
, tlogt

dt.

ou N(x):=§

Par ailleurs il est clair que
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1 X L
(3.9) Z ———— L(p) [— < Xx Z () < X.
p‘1<2x a(o + 1) p° p p
o= a>=2

Enfin, puisque L est non décroissante, on a

N(x) = T L(D)
,tlogt , tlogt

= L(2)loglogx + O(1) » + o lorsque x = o .

X

dt

m>Lm§

En combinant alors (3.3), (3.4), (3.5), (3.8) et (3.9), on obtient le résultat,
incluant 1’égalité (3.2), dans le cas oU R = L € Z.

Il reste a considérer le cas ou R(x) = xPL(x), avec p > 0. Comme
x—-—1<[x]<x,ona

1 1
=) R(p)(ﬁ—l) <= Y R(p)

2P<X X p<x

R
Hex B2y

p<x D

et donc

1 1
V() - - ¥ R(® <= L R(p) [—g] SV ().

X p<x X p<x
Or en utilisant les représentations

Alg) =§ 5%aﬁr(t) et ), R(p)=§ R(2)dm(2)

p<x P ) p<x 2

et en utilisant le théoréme des nombres premiers, tout comme on 1’a fait
dans le cas R(p) = L(p) ci-dessus, on établit que, lorsque x = oo,

xP L(x) . 1 xP L(x)
€ s
p logx X p<x p+ 1logx

de sorte que les trois quantités y(x), }CZstR(p) et y(x) — i L, < R(P)
sont du méme ordre de grandeur. Ainsi, compte tenu des relations (3.3)
et (3.4), la démonstration sera terminée si I’on peut démontrer que le deuxiéme
terme & droite de (3.4) est o(xwy(x)). Le résultat sera donc démontré si
I’on arrive a établir 'implication générale suivante:

T(n) 20, @(x)— +o0, S := ) T(n) ~ex)
y T )

n<x

(3.10)

=o(p(x) .
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Or cette derniére somme peut s’écrire comme suit:

T(n) S(n) — S(n - 11 S([x1)
ngx n - né:x n ngx S(n) ( n + 1) * [X] + 1
(3.11)
-y 2o <x>)~§ 2D a1+ 0000
n<x n(n ) 1

Ainsi compte tenu de (3.11), I'implication (3.10) est une conséquence
immédiate du lemme 3.3. Ceci termine la démonstration du théoréme 3.2.

R.L. Duncan a montré (voir [4]) qu’en moyenne, la moyenne de o sur les
diviseurs de n est égale a %log log n. Plus précisément Duncan a démontré
qu’il existe une constante c telle que

1
x-1 Y ( Zco(a’))—x‘lZ(b(n)zéloglogx+0+0( )

n<x \T(n) 4 By log x

A cette fin, Duncan a utilisé la relation asymptotique bien connue

(3.12)
b
Y on)= Y Y 1= Y |=| =xloglogx + Cx + O(x/logx) ,
n<x n<x pln p<x LP

ou C:=vy + X, (log(l —p‘1)+})) et vy est la constante d’Euler. Bien
plus encore, Duncan a établi 1’égalité des ordres normal et moyen de ®(n).

Etant donne¢ f € F, il est naturel d’examiner le comportement de la
suite f, f f . Ainsi, pour un entier non négatif m fixé, on considére
I’itération T, definie par

Tu(f) = T(Tn () = oo = T i(T1(f)) = Tou_1(f)
ou 7_’1 = 7_" To(f)=f, et ou
(Tu(f) (1) = — Y (Tw1(S) @), n>
T( ) dln

Pour simplifier la notation, on désigne par f m Il 1rnage de f par Tm, i.e.
T (f) = fm. Nous définissons de méme les itérations fm et f m €t obtenons

alors par induction sur m, compte tenu des propriétés de T, T et T, I’énoncé
suivant.

THEOREME 3.4. Soit m.un entier non négatif et f une fonction
arithmétique. Alors Tm, T, et T préservent [’additivité et la multi-
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plicativité. En particulier si [ € &/ alors f,,,(n) = f(n)/2™ et fm(n)
= f(8(n))/2m.  Lorsque fe @, Fm(n) = fu(n) = f(n)/2m. Enfin
si feFd, fu(n)=fuln)=f(n)/2m= f(8(n))/2m.

Afin de généraliser le résultat de Duncan, nous aurons besoin du lemme
suivant qui est facile a démontrer.

LEMME 3.5. Soit f e «/. Supposons que f est constante sur [’en-
semble & des nombres premiers et qu’elle satisfait a f(p") — f(p™~1)
= 0(1) umformement pour p premzer et r=2. Alors les expressions
T = fuD™ ) fnp7) = fu(71) et Fu(p') = fulp'=) sont
également bornees umformement pour p premier et r>=2. De plus les
fonctions f s f,,, et f m SOnt constantes sur .

A chaque fonction g constante sur 27, on associe les constantes suivantes

cg:i=g@2) e D,i=c,C+ Y Y g(p")—g(p"l)’

rz2 p r

ou C est la constante de la relation (3.12).

THEOREME 3.6. Soit f une fonction additive satisfaisant les hypo-
theses du lemme 3.5. Alors

F () = Lloglogx + D; + O(1/logx),
Y Fa

n<x

Z fAm(n) = ;f; x 'Y ()= 2f loglog x + ;CJF O(1/log x),

n<x n<Xx

- D
Y fam(n) = %loglogx + 2—”]; + O(1/1og x).

n<x

Démonstration. Si g € o/ et est constante sur 2, on a

x 'Y gm)y=x1Y Y gpH=x1Y Y (ep)-gpr)

n<x n<x plln n<x pln
r>1
X X
=x7leg X [=] +x7t L (g(p)—g(pr ")) [—]
p<x LD pr<x p’

rz2
Alors la relation (3.12) et le lemme 3.5 permettent d’obtenir les égalités du
théoréme si on prend soin de remplacer successivement g par f,,, fm €t fim.
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EXEMPLE. Si f(n) =logt(n) et m = 1, alors

- log 2 log 2
x-1 Y f(n)=%loglogx+ —i—C

1 ((r+ 1)”
log

r!

+ X

_— ) + O(1/logx) .
r>2 p r(r+ 1p’

A —
4. MESURE DE L’ECART ENTRE f ET LES MOYENNES f, f ET f

Nous allons étudier le moment d’ordre deux (selon le sens des définitions
des moyennes f, f et f) de I’écart entre f(n), f(n) et f(n) et les valeurs
de f sur les diviseurs de n.

Etant donné une fonction arithmétique f, on Iui associe les trois
opérateurs

_ 1 _
Af(n):= — Y (f(d) - f(n)?,

(1) dln
A 1 A
Aftn)i= 25 T w2@) (f(@d) = F ),
d|n
- 1 -
Af(n):= Y (f@d)-fm)>.
2(0(11) d|n
(d,n/sd) =1
Ainsi on remarque que
_ 1 _ _
Af(n) = —— Y {f(@*+ f(n)>=2f(n)f(d)}
T(l’l) dln

1 _ )
=——~Z,ﬂw2+fmv—2ff;;.ﬂw
dln

T(n) dln T(

1 _
=—— ) f(d)?- f(n)?

‘r(n) dln

et donc que

_ 1 _ _ _
4.1) Af(n) = —— Y f(d)? - f(n)? = f3(n) — f(n)2,

T(n) dln

1 A - A
Y uX(d) f(d)? - f(n)? = f2(n) — f(n)2,

2aln) d|n

4.2) Af(n) =

4.3) Af(n) = Y fd? - f(n)? = f2(n) - f(n)?.

2m(n) dn
(d,n/d) =1
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