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384 B. DE SMIT

Finally, we give two applications in Section 5 that show how these results

are related to more concrete questions in algebraic number theory. First we
indicate how to do certain index computations for rings of integers in abelian

extensions of number fields. For a bicyclic quartic field this implies that the

lattice generated by its quadratic integers has index 2 in the ring of integers.
Then we explain that the result for units gives a method to obtain class number

inequalities between so-called "arithmetically equivalent" number fields.

2. Factorizability and factor equivalence

Let G be a finite group. A character of G is said to be rational if it is the

character of a representation of G defined over Q. Denote the additive group
of rational characters of G by R(G). One can view R(G) as the Grothendieck

group of finitely generated Q[G] -modules. It is the free abelian group generated

by the set X(G) of isomorphism classes of irreducible Q[G]-modules.

The trivial character lh on a subgroup H of G induces the permutation
character 1# G R(G), corresponding to the G-module Q[G/H]. Let S denote

the set of subgroups of G and let T be an abelian group. We will use

multiplicative notation for the group operation on T.

(2.1) DEFINITION. A function /: S T is said to be factorizable if
for every collection of integers (a^Hes wfi/z ^fHeS a^Yf 0 we have

n HesfWa" l-

(2.2) Examples. If G is the Galois group of an extension of number

fields L/K then Galois theory gives a bijection between S and the set of
intermediate fields of L/K. For any parameter associated to number fields one

thus obtains a function on S, and one may wonder if it is factorizable. The

discriminant, zeta-function, and the odd part of the number of roots of unity
in a number field, are all factorizable. The p-part of the class number for

p \ [L : K] is also factorizable; cf. [18]. The fact that the parameter hRjw is

factorizable is known as "Brauer's class number relations" (see Section 4). See

Kani and Rosen [10, 11] for factorizability results for curves and Jacobians.

A function /: S -+ T induces a group homomorphism /* : Z[S] —> T,
where Z[S] is the free abelian group generated by S. By definition / is

factorizable if and only if /* vanishes on the kernel of the homomorphism

r: Z[S] —> R(G) given by H For abelian groups G the map r is

surjective. For every group G the image of r has finite index by Artin's



FACTOR EQUIVALENCE RESULTS 385

induction theorem [16, Ch. 13, Th. 30]. If G is abelian or T is divisible, then

it follows that / is factorizable if and only if /* gr for some homomorphism

g: R(G) —> T. We then have

f(H)= n 9(x)',H'x

X^V(G)

where nH,x is the multiplicity of x in 1#» be., J2xnH,xX- This is

the factorization that the word factorizable refers to. One way to show that

a function / is factorizable is by exhibiting such a map g. For instance, to

show that the discriminant function in (2.2) is factorizable one lets g(x) be

the Artin conductor of x (see [15, Ch. VI, §3]).
Let us give another example from linear algebra. Suppose that K is a

field of characteristic zero and that M is a finitely generated K[G\ -module.
Let if be a K[G] -endomorphism of M. Then p maps MH to MH for any
subgroup H of G, and the characteristic polynomial f(H) G K[t\ of the

restriction p\MH is a factorizable function with values in T K(t)*. To see

this, define g(V) for any Q[G] -module V as the characteristic polynomial
of the AT-linear endomorphism of Hom^[G](Af ®q V,M) induced by p. Then

g: R(G) —> T is a homomorphism such that g(lg) =f(H). This result is also

given by Kani and Rosen [11, Prop. 4.6]. It implies the following lemma.

(2.3) LEMMA. The functions dimK(MH) G Z and Ty(p\mh) e K are
factorizable. If <p is an automorphism then d^(H) det((^|mh) <E K* is

factorizable.

Now suppose that K is the quotient field of a Dedekind domain A and
still assume that char AT 0. By an A-lattice we mean a finitely generated
A-module without A-torsion, or equivalently, a finitely generated projective
A-module. An A [G]-lattice is an A [G] -module that as an A-module is an
A-lattice. Denote the group of fractional A-ideals by 1(A). For two A-lattices
X C Y with X 0 K Y 0 K the quotient X/Y is an A -module of finite
length. If the Jordan-Holder factors of X/Y are A/pu A/pm then the
A-index [Y : X]A is defined to be the A-ideal pi • • -pm (cf. [15, Ch. I, §5]).

(2.4) Definition. We say that two A[G]-lattices M and N are factor
equivalent if there is an A[G]-linear map t M —> N for which the following
hold :

(1) the induced map M ®AK ^ N ®AK is an isomorphism;
(2) the index [Nh:(M)H]A e 1(A) is a factorizable function of H.



386 B. DE SMIT

(2.5) PROPOSITION. If N and M are factor equivalent then for any A[G]~
linear embedding j: M ^ N the function H *—>> : j(MH)]A is factorizable.

Proof We have j (pi, where i is an embedding as in (2.4) and p is

a K[G] -linear automorphism of N <%)A K. Using [15, Ch. III, §1, Prop. 2] and

the notation of (2.3) we see that

[Nh :j(MH)]A dv(H)• [Nh :

This is a product of two factorizable functions by (2.3) and by our choice

of i.

The fact that "factor equivalence" is an equivalence relation is an easy

consequence of (2.5). If p is a prime of K not dividing #G then
condition (1) of (2.4) implies that the p-part of [Nh : i(M)H] is factorizable.
One can prove this with [16, §15.2] and [16, §14.4, Lemma 21].

(2.6) Remark. The definitions of factorizability given by Fröhlich

[8; 9] and Burns [2] for abelian groups G are in agreement with our
definitions. They also define the notion called Q-factorizability in the abelian

case, which is a stronger condition than factorizability. However, the function
that one wants to be factorizable in the definition of factor equivalence
automatically satisfies this stronger condition if it is factorizable. Thus, Q -factor

equivalence is the same as factor equivalence.

In [4, §3] a factorizable function / with values in I(Q) must also satisfy

an additional condition : there should be a map g from the group of complex
characters Rc(G) to 1(E), where E is some normal number field containing
all character values of G, such that g is Gal(£/Q)-equivariant, and such

that glg) is the E-ideal generated by f(H). It is not hard to see that this

condition is satisfied by all functions that are factorizable in our sense.

3. Rings of integers

Let A be a Dedekind domain with quotient field K of characteristic

zero and let E a Galois extension of K with Galois group G. The integral
closure B of A in L is again a Dedekind domain. Assume that for all primes
of L the residue class field extension is separable.
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