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CENTRALISERS IN THE BRAID GROUP
AND SINGULAR BRAID MONOID

by Roger FENN, Dale ROLFSEN and Jun ZHU')

ABSTRACT. The centre of the braid group B, is well-known to be infinite cyclic
and generated by a twist braid. In this paper we consider the centraliser of certain
important subgroups, and in particular we characterise the elements of B, which
commute with one of the usual generators ;. This characterisation is generalised to
the monoid of singular braids SB,, recently introduced (independently) by J.Baez
and J. Birman. We determine the singular braids which commute with o;, or with a
singular generator T;; in fact we show these submonoids are the same.

We establish that the centraliser in B, of ¢, is isomorphic to the cartesian product
of two groups: the group of (n — 1)-braids whose permutations stabilise j and the
group of integers. More generally, we show that the centraliser of the naturally-
included braid subgroup B, C B, likewise splits as a direct product, and we give
an explicit presentation for this centraliser. We also describe the centralisers of
SB, C SB,,.

As another application we consider a conjecture of J.Birman regarding the
injectivity of a map, related to Vassiliev theory, n:SB, = ZB, from the singular
braid monoid to the group ring of the braid group. We see that the question is related
to the centraliser problem and prove the injectivity of 1 for braids with up to two
singularities.

1. INTRODUCTION AND BASIC DEFINITIONS

The braid group B,, for an integer n > 2, may be considered abstractly
as the group with generators ¢,, ..., 6, and relations

GGk = OkOj if I]—k|>1,
G;0k0; = 0,00 if lj—klzl
There are equivalent geometric descriptions of braids as strings in space,
as automorphisms of a free group F,, as the fundamental group of a

configuration space, or as homeomorphisms of an #n-punctured plane
(see below), which explains the importance of the braid groups in many

1Y The authors gratefully acknowledge support from NATO grant 880769 and Canadian
NSERC grant 88086.
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disciplines. The originator of braid theory, Emil Artin, posed several
(at the time) “unsolved problems” in [Art2], including:

“With what braids is a given braid commutative?”

“Decide for any two given braids whether they can be transformed into
each other by an inner automorphism of the group.”

The present paper is concerned primarily with the first question: finding
the centraliser of a given braid. Although an algorithm exists, as we’ll describe
shortly, this problem can still be said to be open in general. However, we
consider the most basic special case and characterise, in a simple geometric
way, the set of all braids which commute with one of the generators o;.

The latter question — the conjugacy problem — was settled in principle
by Garside [Gar], who gave a finite procedure to decide if two given braids
are conjugate. The present work also contributes to this question, in that
we determine exactly which inner automorphisms will take one of the
standard generators to another.

G. Burde [Bur] has computed the centralisers of certain special kinds
of braids: those which are “j-pure” as defined by Artin, meaning a pure
braid (see our discussion below) for which all strings except the j'" are
horizontal straight lines. Burde’s point of view (like ours, which was
developed independently) is partly algebraic and partly geometric.

For an arbitrarily given element a € B,, there is an algorithm to find a
finite set of generators for its centraliser, as shown by G. Makanin [Mak].
This result was extended by G. Gurzo [Gurl] to the centraliser of any finite
set of elements of B,, who showed that the generators can be taken to be
positive braids (no negative exponents). The methods of Makanin and Gurzo
are algebraic and combinatorial. They rely heavily on techniques pioneered by
Garside; transferring the problem to the monoid of positive braids, and thus
making its solution a finite search. Their method sheds little light on the actual
structure of the centraliser. However, in a later paper [Gur2], Gurzo extended
the work to explicitly compute generating sets for centralisers of various special
types of braids, including the 6, and their powers. As an application, she
discovered that the centraliser of any nonzero power ¢} is independent
of m.

In fact more can be said, in general, of centralisers of finite sets in B,;
they are biautomatic. Thurston proved in [ECHLPT] that B, is biautomatic
(see also [Charl], [Char2]), and Gersten-Short [GS] have shown that
centralisers of finite sets in biautomatic groups are themselves biautomatic.
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Following some preliminaries, our goal in Sections 2 and 3 will be to
characterise the centraliser of o; using the geometric viewpoint, exploiting
the action of B, on (classes of) arcs in the complex plane. More generally,
we identify all solutions B to o, = Bo, by a natural criterion involving
braids as geometrical objects — having what we call a “(/, k)-band.”
Using this criterion, we recover Gurzo’s result that the centraliser of o J’” is
independent of m # 0. It also gives an alternative proof to the old result
[Chow] that the centre of B, is infinite cyclic. In Section 4 we use our
results to describe the structure of the centraliser of B, in B,, where
B, C B, is the usual inclusion, r < n, and we give an explicit presentation
of this centraliser (our generators are different from Gurzo’s).

In Section 5 we consider an extension of B, to the singular braid
monoid SB, recently introduced by Birman [Bir2] and Baez [Bae] to study
Vassiliev theory. We show that the centraliser of a basic singular generator T;
in SB, coincides with the centraliser of ;. Moreover, the solutions B to
7,8 = P14 are shown to be exactly those B which have a (possibly singular)
(J, k)-band.

Our results are used in Section 6 to study a question raised by Birman
regarding injectivity of the Baez-Birman-Vassiliev map m from SB,
into the group ring ZB,. Finally, in Section 7 we generalise the ‘““Band
Theorem™ (2.2) to the context of singular braids, and consider the centra-
lisers of ¢;,1; and SB, in $B,.

We would like to thank Joan Birman, Vaughan Jones, Christine Riedtman
and Hamish Short for helpful conversations regarding this work.

GEOMETRIC BRAIDS. Let C denote the complex plane, {1,...,n} the
first n integral points on the positive real axis and I = [0, 1] the unit
interval. We consider an n-braid B to be a collection of n disjoint strings
BCCxI={(z 1} such that the j-th string runs, monotonically in ¢,
from the point (/, 0) to some point (k,1),j,k €{1,...,n}. An isotopy in
this context is a deformation through braids (with fixed ends), and isotopic
braids are considered equivalent. We write j = pB*k or, equivalently
J*B = k, so that braids can act either on the right or left as permutations
of {1,...,n}. A pure braid is one whose permutation is the identity. We
will picture braids horizontally rather than vertically, so that multiplication
of braids is by concatenation from left to right, just as written algebraically.
The (equivalence classes of) braids with this multiplication form the group B,
described algebraically above.

Basic references for braid theory are [Artl], [Art2] and [Birl]; [BZ]
and [Han] also contain good accounts and [Bir2] is an up-to-date discussion
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including singular braid theory. As noted by Artin, one can also regard a
braid as corresponding to a homeomorphism of C onto itself, with compact
support and setwise preserving {1, ..., n}. More precisely, a braid corresponds
to a mapping class in which homeomorphisms of C are considered equivalent
if one can be obtained from the other by a (compactly supported) isotopy
in which the points {1, ..., n} are held fixed. Thus equivalence classes of
braids are in one-to-one correspondance with such mapping classes. As
depicted in Figure 1 (see also Figure 6), the braid o; corresponds to the class
of a homeomorphism which is a local (right-hand) twist of the plane inter-
changing the points j and j + 1, and supported on a neighbourhood of the
interval [/, j + 1].

j“‘l’l //

DAY

C x {1}

C x {0}

FIGURE 1
The homeomorphism associated with a generator ¢;

The inverse correspondence is as follows: suppose one has a homeo-
morphism of C which is compactly supported and fixes {1, ..., n} setwise.
This homeomorphism 1is isotopic to the identity, but the points {1, ..., n}
may move during the isotopy. The track of these points, in C X I, through
the isotopy, gives the geometric braid corresponding to (the class of) the
given homeomorphism.

The product of braids corresponds to composition of homeomorphisms of
C. One can have the braid group act on C either on the left or right — both
conventions appear in the literature. It is convenient for us, in fact, to adopt
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both conventions, extending the above notation for permutations so that
#B:C — C corresponds to a mapping C X 0 = Cx1,

and defines an action on the right, whereas
B#:C — C corresponds to a mapping C X 1 = C X 0

and operates on the left. Thus, for any subset X of C, and braids o, B:

X+ (aB) = (X*a)*B,
(aB)* X = ox (B+X), .
X#B=plxX

This action extends the permutation action of B, as discussed earlier.
(We note that our depiction of generators o, disagrees with that of some
earlier authors, but is in keeping with recent practice, so that ¢; corresponds
to a “positive” oriented crossing; a right-handed twist instead of left.)

PROPER ARCS AND RIBBONS. An important role will be played by the set
of arcs in C which are proper rel {1, ...,n}, by which we mean that their
endpoints are in the set {1, ..., n} and their interiors are disjoint from that
set. Such an arc from (say) j to k is called a (J, k)-arc. We consider
two (J, k)-arcs equivalent if they are connected by a continuous family of
proper arcs; in other words, isotopic. Unless otherwise stated, we do not
distinguish a (j, k)-arc A from its reverse, the oppositely oriented A, which
is a (k, j)-arc. Use the notation:

A, = the set of proper arcs in C, modulo isotopy fixing {1, ..., n} .

It is clear from the above discussion that the braid group also acts
naturally on A,, and we adopt the same symbols f* and =p for the left
and right actions.

By a ribbon we will mean an embedding

R:IXI—-CxI

such that R(s,7) € C X {. Suppose one has a braid B and a (J, k)-arc A4
in C X 0. Then the isotopy corresponding to B moves 4 through a ribbon
which is proper for B, meaning R (0, #) and R(1, ¢) trace out two strands
of the braid, while the rest of the ribbon is disjoint from B. The left end
of the ribbon is A and the right end is A4 * p.

1.1 PROPOSITION. Let B be an n-braid and A and B be proper
arcs for {1,...,n}. Then A =B = B ifand only if there is a proper ribbon
Jor B connecting A CCx0 to BCCx1.
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Proof. We have already argued that A =3 = B implies the existence of
the ribbon. On the other hand, suppose there is a ribbon R from A
to B proper for B. Then by reflection of the ribbon from A4 to A4 * and
concatenation with R, one has a ribbon from A4 *B to B along B~ 'B.
But B-!B can be moved by level-preserving isotopy to the trivial braid
{1,...,n} x I, and then the image of the ribbon provides an isotopy
from A =B to B fixing {1,...,n}. U

2. COMMUTATION AND STABILISERS

The theme of this paper is to reflect algebraic properties of a braid in the
geometry of ribbons and the action of B, on A,,.

Consider an n-braid B which is constructed from an (n — 1)-braid by
running a narrow ribbon along the j'" string, with the ends of the ribbon
being straight line segments on the real line, as pictured in Figure 2. The
ribbon may be twisted arbitrarily. Let B consist of the two edges of the
ribbon, together with the other strands of the (» — 1)-braid (those of
index greater than j need to be renumbered and have their ends shifted,
of course.) Premultiplying B by o, corresponds to putting a twist in
the left end of the ribbon, and the ribbon can be used to convey that
twist through B until it emerges on the right, and we have the equation:
;B = PBoy.

In the special case of j = k£ we have constructed a class of braids which
commutes with the generator o;. In fact, if f is any braid for which
[/,/j+11*B = [Jj,j + 1], it can be isotoped, with fixed endpoints, into one
with such parallel strands. Just slide the strands near each other along the
ribbon, but taper to the identity to keep the ends fixed.

DEFINITION. We say that B has a (J, k)-band if there exists a ribbon
(the band) proper for B and connecting [j,j+ 1] X 0 to [k, kK + 1] X 1.

N ﬂ

FIGURE 2
A braid with a (2.1)-band
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According to Proposition 1.1, B has a (J, k)-band if and only if
[/,j+ 1] %P = [k, kK + 1]. However, it may not be obvious, from an
expression as a word in the generators, whether a braid has a (J, k)-band,
and subwords of braids with bands may fail to have bands, as illustrated
by the following example.

EXAMPLE. Consider the braids a = 6, '6%6, and B = 6,06, >. Then af
has a (1, 1)-band. But neither o nor B have a (1, 1)-band, although they
both stabilise {1,2}. The arc A =[1,2]*a = B *[1,2] is as pictured in
Figure 3. It is an interesting exercise for the reader to check that af
commutes with 6,;, whereas neither o nor B commutes with o;.

A

(87

i

A

FIGURE 3
The braid ap = 65 '6%6,0,0; 2 and the arc 4 = [1,2]*a = B *[1, 2]

We can now formulate the central result of this paper.

2.1. THEOREM. A braid B € B, commutes with a generator o; if
and only if it has a (j,j)-band. Equivalently, the action of *B on A,
stabilises [j,j+1]. U

This is an immediate corollary of a more general result.

2.2. THEOREM. For a braid P € B, the following are equivalent:
(@) o;B =Poy,
(b) oB =PBoy, for some nonzero integer r,
(¢) o;B =Boy, forevery integer r,
(d) B has a (J, k)-band,
(e) L[j,Jj+11#B = [k, k+1].

2.3. COROLLARY. The centraliser of o i is independent of r + 0

and coincides with the stabiliser of the interval [/,Jj+ 1] in the action
of B, upon A,. []
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2.4 COROLLARY. The inner automorphism in B, exchanging gene-
rators, o, = P~'0;B, is achieved exactly by those braids B that have
a(j,k)-band. [

2.5 COROLLARY [Chow]. The centre of B,,n >3 is infinite cyclic,
generated by the braid A?, where

A=06,-1(06,-26,-1)"" (0,62 Cp_1).

Proof. A braid commutes with all braid generators if and only if its
action stabilises all the intervals [1, 2], ..., [# — 1, n], so it has a great ribbon
containing the entire braid, connecting [1, n] X 0 with [1, n] X 1, necessarily
in an order-preserving sense. Such a braid is clearly a multiple of the full-
twist A2. [

3. PROOF OF THEOREM 2.2

It is useful here to introduce an invariant of proper arcs. Throughout
this section A will denote an oriented (k, /)-arc in C which is proper with
respect to {1, ..., n}.

Associated with A is a word in the symbols I, I, ..., 1,1, ",
I; N " ! which can be described as follows. Assume that A is transverse
to the real line. Starting from its initial point k, continue along 4 to / and
whenever A crosses the interval [m,m + 1] write I, if it crosses with
increasing imaginary part and write 7, ' otherwise. In the above notation,
use the interval (— oo, 1] in case m = 0 and [n, o) if m = n, in place of
[m, m + 1]. An isotopy of A will change the word by a sequence of moves
of the following sort:

a) the introduction or deletion of cancelling pairs of the form 17,,7 ,;1 or
I-'1,,
b) left multiplication by a word in I, _;, I} and

¢) right multiplication by a word in I,_, I,.

Let w(A) be the word in the free group on the symbols 1, 1, ..., I,
obtained by deleting all cancelling pairs, all initial segments in I, _;, I, and
all final segments in /,_;, ;. Then w(A) is an isotopy invariant, and it is
routine to check that A can be isotoped to read off exactly the word w(A).
Note that the exponents + 1 of symbols in w(A) necessarily alternate.
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The action of o; on the word w(A4) is as follows, in the case that the
ends of A are not in the set {j,/ + 1}:

1y -1, if m#j,
Ij_’Ij_llj_llj+1 s
I S 5

Jj+1 j—1-

If an end of A happens to be j — 1 or j + 2, one may also have to delete
an initial or final 7', or I 7., after applying the above transformation.

Although not needed in our proof of Theorem 2.2, the next lemma will
be useful later.

3.1 LEMMA. If A isa(k,[)-arc, with {k,1} n{j,j+1} =0, such
that Axc;= A, then up fo isotopy A Is disjoint from [j,j+ 1].

Proof. It suffices to show that w(A), if reduced, does not contain [ ji L
It follows from the above rules that each occurrence of I; in w(A) is
replaced by exactly one occurrence with opposite sign in w(A4 * o i), and if
we are to have w(A) = w(A4 *o;) there will be no cancellations among
the I; in w(4 * ;). So if I; occurs, we conclude w(A4) # w(A4 *¢;), con-
tradicting 4 o, = A. [

3.2 LEMMA. If A is a (j,j+ 1)-arc such that A=*c;=A for
some integer r #+ 0, then up to isotopy A = [j,j+ 1].

Proof. Noting that A#c;=A if and only if Axoc;" =A4, we
assume, without loss of generality, that r > 0. By iteration we have
Axo Jz.’ = A. The lemma will follow if we can show that w(A) must reduce
to the empty word. So we suppose (for contradiction) that w(A) is nonempty.
First, note that then w(A) must involve some symbol 7, with lp—Jj|>2.
(For otherwise 4 C C — {(— o»,j— 1] U [j+ 2, + )}, which is homeo-
morphic with C itself; but it i1s well-known that any two arcs in C are
isotopic with fixed ends, and we would have A isotopic to [/, + 1] and
w(A) empty.)

We assume the first and last symbols of w(A) have exponent + 1 (the
other three cases can be argued similarly, or follow by symmetry). Then,
referring to Figure 4, we have:

WA 02y = (L L7 ) wrd o)
where w* is the transformation of w(A4) according to the rules (*) above,

e
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iterated 2r times. Noting that I, persists in w* it is easy to argue that
w(A *6:") = w(A) is impossible; the contradiction. [

J 7+1
e ® ] —
A
FIGURE 4

The action of *cjz-’ on a (J, k)-arc in case r = 2

We now turn to the proof of Theorem 2.2. It has already been observed
that (e) = (d) = (a), and it is obvious that (a) = (¢) = (b). So it remains to
establish that (&) = (e). Thus we assume that, for some r # 0, 6B = Bo}.
Since the algebraic crossing number of any two strings of a braid is a
well-defined braid invariant, this equation is possible only if {j,j+ 1} *f
= {k, k + 1}. Now, noting that B ~'c;B = o} and that ¢} has a (k, k)-band,
we conclude that there is a proper ribbon for B“GJ’.B from [k, k+ 1] X O
to [k,k+ 1] x 1. Define A =B=*[k,k+1] =]k, k+1]*p 1. Then we
may assume (possibly after an isotopy) that the planes C x 1/3 and
C X 2/3 cut the ribbon in the arcs A X 1/3 and A X 2/3. Moreover, the
middle third of the ribbon, and Proposition 1.1, imply that 4 xc} = A.
By Lemma 3.2, A = [j,/ + 1] and the theorem is proved. [

4, CENTRALISERS OF BRAID SUBGROUPS
We have established the following.

4.1 THEOREM. The centraliser in B, of the generator o; 1is the
subgroup of all braids which have (j, j)-bands. This subgroup is isomorphic
to B’ _|xZ where B’ _, s the subgroup of B,_, consisting of all
(n — 1)-braids whose permutations stabilise j. [l

The goal of this section is to describe the centraliser of B, in B,, r < n,
which we will call C(r, n). Here B, is the r-string braid group with its usual

inclusion in B,, namely as the subgroup generated by ¢;...0,_;.
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4.2 THEOREM. The centraliser C(r,n) of B, in B, consists of
all n-braids in which the first r strings lie on a ribbon, disjoint from the
other strings, and which intersects C x 0 and C X 1 in exactly the
straight line intervals from [1,r] X 0 and [1,r] X 1 (up to isotopy).

Proof. A braid B is in C(r, n) if and only if it commutes with each
oj,1<j<r—1. Thus [j,j+1*B=[/j+1], 1<j<r—-1 and so
[1,r]*P = [1, r], up to isotopy fixing {1, ...,n}. O

It follows that C(r, n) consists of all n-braids constructible as follows.
Let k=n—-r+1 and consider the subgroup B ,l( of k-braids whose
associated permutation fixes 1. Then replace the first string of a braid
in B ,1{ by r parallel strings lying on a ribbon along that string. The ribbon
may be twisted by some integral multiple of 27 (or © in the case r = 2);
such braids are precisely the central elements of B,.

4.3 'THEOREM. The centraliser C(r,n) is isomorphic to the direct
product B, .. xZ. []

n—r+

A PRESENTATION OF C(r,n). In order to establish a set of generators
and defining relations for C(r, n) we recall results of Chow [Ch] regarding
B,. This subgroup of B, is generated by o,,...,04_1, together with ele-
ments a,, ..., a; defined by

¢ — _l _1 e o o —1 2 e o o
These generators satisfy the usual braid relations:
0;6;=0,0;, |i—j|>1

GiG;i+106; =0;4+10i0;+1

as well as the following, for i =2, ...,k — 1:

1

c,-ajc,-‘ = daj, ‘]il,l+ 1
-1
G;a;0; = Qqj+q
~1 —1
6idi+10; =4a;,,02,Q;4, .

In fact these are defining relations for B,I{. Chow also noted that the sub-
group of B, generated by the g, is a normal subgroup (as is clear from the
above relations), in fact a free group on the generators a;, and that B,lc
could be regarded as the semidirect product of that free subgroup with the
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subgroup generated by 6, ... 6,_,, the latter group clearly isomorphic with
the braid group on k — 1 strings.

Applying this to our situation, for each i =1, ...,n — r, let A, ,; be the
n-braid resulting from replacing the first string of the k-braid a;, defined
above, by r parallel strings which lie on an untwisted band. Specifically,

_ e S T
Ai=(0, 6, G,y i-20,+i-1)(0,_,0, C,vi 3C0r+i-2)

-1 -1 -1
T (Gl G, "' G,‘_IG[) X (G,’G,‘_l 61) (0i+10i-.. 02)

e (Gr+i—10r+i—2 e Gr)

Also let C denote the well-known generator of the centre of the r-string
braid group, namely C = o, if r = 2 and in case r > 2:

C=(0,6,"""6,-1)".

FIGURE 5

Special generators of C(r, n)

4.4 THEOREM. The centraliser C(r,n) of B, in B, has the
generators:

Gr+150r4+2ssCp-1sArs1, ..., A4A,,C
and defining relations:

G;0; = 6,0, |i—j|>1

0;0;+10;=0;+10i0;+

ciAjc; ' =A;,, Jj#Fii+1

GiAiGi_l =A;41

GiAi+IGj_1 = Ai—+11AiAi+l

Co;=o0;C
CA;,=A,C.

(Subscripts ranging over all values for which the symbols are in the list of
generators.) L[]
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5. THE SINGULAR BRAID MONOID AND THE MAP 1

SINGULAR BRAIDS. Just as Vassiliev [Vas] used singular knots to extend
and organize knot invariants, it is useful, as in [Bae], [Bir2] to extend the
group of braids to the monoid of singular braids. (A related construction
is given in [FRR].) The strings of a singular braid are allowed to intersect,
but only in discrete double points, at which they define a unique common
tangent plane. As with braids, one identifies singular braids which are isotopic.
The isotopy need not preserve levels, but one must move only through
singular braids which have monotone strings, and the tangent plane defined
by the two strings at a double point is required to vary smoothly (in 3-space)
during any isotopy of the singular braids. Multiplication is by concatenation
as with braids; a braid with one or more singularities is not invertible in
the monoid. Let SB, denote the monoid of singular braids on » strings;
generators for SB, are shown in Figure 6.

e e

FIGURE 6
Generators of SB,

In addition to the braid generators o,, ***,0,-1 we have the cor-
responding elementary singular braids T, **,Tn-1. Together these
generate SB,. A proof is sketched in [Bir2] that, with the invertibility

of the o;, and the braid relations given in Section 1, the following additional
relations serve to define SB, as a monoid:

6;T; = T,0;;
0iTj=0;T;, UTj=71T, |i—j|>2;

6,0,T;=1,0;0;, |i—j|=1.
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Notice that the string labels involving a particular singularity are invariant
under these relations. Any equivalence between singular braids must match
the first singularity involving strings i and j in one braid with the corre-
sponding singularity of the other, etc.

5.1 PROPOSITION. Left and right cancellation hold in SB,, that is
either of xy =xz or yx=2zx with x,y,z in SB, implies y = z.

Proof. By symmetry and induction, it is enough to check left can-
cellation, and the special cases x = o¢;, which is trivial, or x = t;. But if
T;¥ = T;Z, the singularity of t; in each of the two singular braids can be
topologically characterised as the one involving the j and j + 1 strings that
is nearest to the left end, so an equivalence taking t;y to 7,z must take t;
to 1; and therefore y to z. [

Let us take ZB, to be the group ring of the braid group B,. Then the
natural map B, > ZB, can be extended to a monoid homomorphism,
n:SB, — ZB, by taking

n(s;) = o;, n(1;) = 0; — Gi_l .

Note that SB, is a (2-sided) ZB,-module and n is a ZB,-homomorphism.

J. Birman in [Bir2] used this homomorphism (with target CB,) to
establish a relation between the Vassiliev knot invariants and quantum group
(or generalised Jones) invariants. She conjectured that the kernel of n is
trivial, i.e. a nontrivial singular braid in the monoid SB, never maps to zero
in ZB, . A stronger conjecture is that n is an embedding. The weak version
of Birman’s conjecture (as actually stated) is rather easy — we give the
proof below. The injectivity question seems much harder, and is still an
open question at the time of this writing. In the next section we will apply
techniques developed in the previous sections to show that n is injective at
least when restricted to singular braids with no more than two singularities.
We understand that Birman also has obtained these results independently.

To analyse the n map, it is useful to consider the degree of a (singular)
braid, by which we mean the total exponent sum of all the ¢; in an expression
of the braid in terms of generators. It is well-known, and easy to see from
the homogeneity of the braid relations, that degree is well-defined. Likewise,
the number of singularities is invariant and we define SB” C SB, as the
subset of singular braids with exactly ¢ singularities. The following is
routine to verify.
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5.2 PROPOSITION. Suppose x € SB'" is a singular braid of degree s.
Then m(x) € ZB, is a linear combination of 2' elements of B, (call
them terms). There is a unique term of maximal degree s +1 and a
unique term of minimal degree s — t. More generally, for each integer
u,0 < u<t,n(x) has (;) terms of degree s+t — 2u, and each of
these terms has coefficient (— 1)*. [

There may be some cancellation among the terms of degree strictly
between s — ¢ and s + ¢, but since there is only one term of maximum
and one term of minimal degree, they cannot be cancelled and we draw
the following conclusions.

5.3 COROLLARY. No element of SB, maps to zero under m. L[]
The kernel of m is also trivial in another sense.

5.4 COROLLARY. If 1€ B, C SB, denotes the identity braid, then
n-'() =1 [0

To close this section we consider the natural extension of 1 to the monoid
ring ZSB, .
5.5 PROPOSITION. The extension n:ZSB,— ZB, is not injective.

Proof. 7, and 6, — o, ' are two elements of ZSB, with the same
image. For a more subtle example, consider the elements

-1 -1
X=T1T,06; + 71027y, Y =T,0, Ty, + 0,717, .

An easy calculation verifies that n(x) = n(y). However, x # y, as can
be seen by examining their images under the map t;, = 6,, 6,—~ ;. [J

The above example is related to certain canonical relations obeyed by
the Vassiliev invariants — see [Bir2], p. 274, or [Bar].

6. RESULTS REGARDING INJECTIVITY OF n

Note that if x, y € SB,, satisfy n(x) = n(»), then they both have the same
number of singularities, i.e. x € SB' if and only if y € SB. The relevance

of bands to the injectivity question will be illustrated by first checking
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injectivity of n restricted to SB{". (Of course, it is injective on SBY = B,,,
because it is simply the inclusion of the basis of ZB,.)

6.1 LEMMA. For a braid B € B,, the following are equivalent:
(a) T B = B’Cj3
(b) 7B =Pt for some positive integer m.

(c) B has an (i,j)-band.

Proof. Clearly (a) = (b) and, using the homomorphism SB, — B,
defined by T4 = o4, 64 = o4, we see that (b) implies ¢;"p = Bo’, which
implies (c) by Theorem 2.2. Finally, (c) = (a), because the band can be
used to convey t; on the left of B to become 1; on the right. [

In Section 7 we will prove a generalisation of this lemma in which B is allo-
wed to be a singular braid.

6.2 THEOREM. If x,y € SB'V and m(x) =n(y), then x =y.

Proof. We can write x = at;p and y = a1’ for (nonsingular) braids
o, a’, B, B’ and compute:

n(x) = aop —ac; 'B,
) =a'c,p’ —a'c; 'B.
Equating the terms of highest and lowest degree, we have:
ac;p=0'c;B’ and ac;'B=a’c; ' p".
It follows that
o} (BB’ ")) = (BB’ "o}
and, by the lemma,
u(BB - =CBB "Ny,
;BB 1) = BB "o,
We quickly deduce that BB’ ~! = aa’~! and it follows that
at; B =o't B’ []

We will now work towards the injectivity of n on SB'”. Define a
singular ribbon to be a map R:1 X I = C X I such that R embeds I X ¢ into
C x t, except for finitely many points #, for which the image is a single
point in C X . One also assumes, at these singular points, that there is a
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tangent plane in C x I for the singular ribbon. Singular ribbons are the best
one can do for ribbons for singular braids. As with braids, we say a singular
ribbon is proper for a singular braid if it sends {0, 1} x I along two of its
strands and the image is disjoint from the other strings of the singular braid.
An isotopy of a singular braid can be extended to an isotopy of any of its
proper singular ribbons, with the following caveat: under the equivalence
T,T; = 1;7; one may have to reparametrise the singular ribbon.

A singular ribbon NOT a singular ribbon
FIGURE 7

Singular ribbons only intersect two strands of a singular braid

In contrast to the situation for ordinary braids, it is not always possible
to find a singular ribbon proper for a given singular braid x and with
a given arc A as its intersection with C X 0. For example, consider an
(i,7 4+ 1)-arc A, suppose B is a braid such that {i,i+ 1}*B ={/,j+ 1} and
consider a singular braid x of the form x = f1;---. Then a necessary
condition for the existence of a singular ribbon, whose intersection with C x 0
is A, would be 4 *p = [/,j+ 1]. On the other hand, for the same reason
as for ribbons, we do have the following.

6.3 PROPOSITION. If a singular ribbon R is proper for the singular
braid x and RAX0) and R{X 1) are isotopic as proper arcs
to [j,j+11 X0 and [k,k+1] X1, respectively, then o;,x = X0,
in SB,. L[]

DEFINITION. We will extend our previous definition and say that a
singular braid has a (j, k)-band if it has a proper ribbon or singular ribbon
connecting [/, j + 1] X 0to [k, k + 1] X 1. The crucial facts we’ve proved are
that a braid  has a (j, k)-band if and only if 6;B = Boy, and for singular

braids, having a (j, k)-band is a sufficient condition for satisfying such an
equation.
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6.4 LEMMA. Let o, be braids such that both ac;p and of
have (j, k)-bands. Then o7;B also has a (j, k)-band.

Proof. Consideration of the induced permutation implies that the pair
{j,j+ 1} *a is either {i,i + 1} (case 1) or disjoint from {i,i + 1} (case 2).
In either case, let A = [j,j + 1] # a. Then, since a.p has a (J, k)-band we have
[/, + 1] *(aPB) =[k,k+ 1], and so A =]k, k+1]*P -1 =P *[k, k+ 1].
Similarly the hypothesis that a.o,;p has a (J, k)-band implies that 4 * 6; = A.

Now, in case 1, 4 is an (i,i + 1)-arc and we must have A xc, = A4.
Lemma 3.2 implies that A = [/, i + 1]. We conclude that o has a (J, {)-band
and B has an (i, k)-band, and these combine with the obvious singular
(i, i)-band for t; to provide a (J, k)-band for at;p.

In case 2, Lemma 3.1 applies, and we may assume after an isotopy of
the (Jj, k) band for af that its intersection, A, with C X 1/2 is disjoint
from [i,7 + 1]. This implies that we may insert T; between o and B so that
the singular strands are disjoint from the band, and we conclude that at;f3
has a nonsingular (j, k)-band. [

6.5 THEOREM. The map m is injective on SB'.
Proof. Consider an equation of the form
n(at;pr,;v) = n(a’'t Brtv’)

where a,a’, B, B, v,Y', € B,.
Now

n(at;Bt;v) = ao;Bo;y — ac; 'Bo;y — ao;Bo; 'y + ac; 'Bo;ly

and n(a’'t;-B’1;-y’) has a similar expansion. If they are equal in ZB,, then
considering the degrees we must have one of two sets of equations. Either

(1) ao;Bo;y =a’cip'o;y’
(2) ac; 'Bo;y =a'c; ' Boy
(3) ac;Bo; 'y =a'c.Bory’
4) ac; 'Bo; 'y =a'c;'B'c;ly’
or
(1) ac;Bo;y =a'ci B oy’
2" ac; 'Bo,y =a'ciB'c; iy’
- (3") ac;Bs; 'y =a'c; ' B'o;y’

“4) acs,._IBGJ-‘l :a’cs,-_,‘ 'o;‘y’
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We claim that in either case the following are true:
®) afy =a’'p’y’
(6) at BTy =o't BTy

Assume initially that (1), (2), (3) and (4) are satisfied. Eliminating "o A
between (1) and (2) gives a’—lacf = of,a"la. The main theorem now
implies that a’~'a has an (i’,i)-band. Similarly eliminating a'oc; P’
between (1) and (3) implies that yy’~! has a (j,/")-band. Applying these
facts to (1) gives

6;/B'c;r=0a "lac;po;yy’ "' = o0 "taByy’ lo,

and (5) follows in this case.
Similarly using (5)

1B T = T rapyy Tl = o e By Tl

and therefore (6) also holds in this case.

Now assume that the equations (1), 2), (3") and (4) hold. A similar
elimination as in the first case implies that Bo;yy’~! has an (i,j")-band
and o’ ~'ao;p has an (i’,j)-band. So

6B'c;r=a’ "lac;fo;yy’ "' = o0’ oo Pyy’ !
The above can be written as
(7 ac; By =a'Bfo; v’
Similarly from equation (4) we have
®) ac; 'By=0a'B’c;y’

Eliminating o ~'a’p’ between (7) and (8) gives o:Byy’~! =PByy ~'c;,
so Byy’~!has an (i, j')-band, and with Lemma 6.6 we deduce that Bt;yy’ !
has an (i,j")-band. We can also conclude that equation (5) holds in this
case. A similar argument shows that o’ ~!'af has an (i’, j)-band.

Hence
o latBryy’ "l =a " ltapryy Tl (i,j")-band
= 100" " taPyy 1. (i, j)-band
— BTy

So (6) is true in this case as well. [
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7. CENTRALISERS IN SB,

7.1 THEOREM. For a singular braid x e SB, the following are
equivalent:

(a) o©;jx = XG0y,

(b) ch = x6,, for some nonzero integer r;
(c) J’x = x6), for every integer r;

(d) 71;x=XxTk;

(e) r;x = x1,, for some nonzero integer r;

(f) x has a (possibly singular) (j, k)-band.

Proof. We only show (b) implies (f). The other implications are quite
clear. The term ‘“band” will include the possibility of a singular band.
Suppose 6x = xo,. Then we have that ojz.’x = xc3 . Assume x = B1;),
where 3 is a braid; in other words 7, is the first singular generator appearing
in x. Then we have B‘loz’Bt,y = T; yck . Recall that isotopy, or the
extended Reidemeister moves for singular braids, do not change the order
of singular generators on the same strings. Since B~ 'o JZ.’B is a pure braid,
the t;, in T; yc52’ corresponds under some homeomorphism, to the t; in
B ‘10 "Bt;y. Hence the image, under that homeomorphism, of the trivial
smgular band near the first 1, provides a band for B ~'c jz-rB. Therefore, 1;
commutes with B‘lojz-’B. It follows that TP *lczrﬁy = T, yoir. By Propo-
sition 5.1, we have B*lo "By = yoi, i.e. cs "By = Byc: . By induction,
By has a (J, k) band. Since t; commutes w1th B—lo "B, so does o;, thus
wehaveB‘lc ch—csB‘lo "By = 0;y6%, i.e. 0 "Bo;y = Bo,yoi . It
follows from induction assumption that Bo;y has a (J, k)-band. Since both
By and Po;y have a (j, k)-band, we can use the argument of Lemma 6.4
to conclude that x = Bt;» has a (J, k)-band. [

The above theorem allows us to identify monoid centralisers in SB,.
Notice that SB, is abelian. On the other hand, for » > 3, any singular braid
with a singularity involving strings labelled, say, j and k, j < k, could not
possibly commute with 7t,, as any (singular) band from [k, k+ 1] X 0
to [k, k+ 1] x 1 would have a forbidden intersection with the j string,
see Figure 7. Therefore for n > 3, only nonsingular braids are central. We will
conclude with two applications whose proofs, at this point, can safely be left
to the reader.
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7.2 THEOREM. The centre of SB, isall of SB, for n=2. Butin

case n =3

it is the same as the (infinite cyclic) centre of B, C SBh,

generated by A2. [

7.3 THEOREM. Under the natural inclusion, the centraliser of SB, in
SB,, r < n, is generated as a monoid by the generators (see Theorem 4.4)

of C(r,n):

Cr+150r+25 «ee) GnﬂlsAr-i-l,”'aAnsCs

together with their inverses and the singular generators:

[Art 1]

[Art 2]
[Bae]

[Bar]
[Birl]

[Bir2]
[Bur]

[BZ]

[Charl]
[Char2]
[Chow]

[ECHLPT]

[FRR]
[Gar]

[GS]

Triqs s Tno1 if r=3, or
Ty T3y Tay ey Ty I r=2. []
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