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The /-sequence /"is interesting because the adjunction problem is already

proved (without the torsion-free hypothesis) for words with this /-shape [L].
However the methods discussed here do not extend this result to /-sequences
in normal form based on /". An example is Z3/-1/3/-1.

Another interesting case is the sequence tt~l which is not amenable.

However a simple trick (substitute u2 for /) makes it suitable. Hence
theorem 5.1 implies a solution to the adjunction problem (over torsion-free
groups) for words of the form gtg't~l. For words of this shape, torsion-
free is a necessary condition as the example in the introduction shows!

We do not yet have a simple test for amenability though it is easy from
the definition to write down large classes of amenable sequences. However
it can be seen that, speaking very roughly, a sequence is amenable unless
it is has a uniform slope, like t5t~3t5t~3 or /3/~3/3/~3 (slope zero).

We give here the other applications from [Kl] of the crash theorems,
not covered above.

Theorem 6.1 (Application to free products). Let A, B be groups and
suppose each (cyclic) factor of ueA*B - A has infinite order. Then the
natural homomorphism A (A * B \ [A, u] 1> is injective.

Proof Suppose not. Then the conditions of the first transversality lemma
apply and there is a non trivial element a e A such that a e (([A, «]». So
we have a cell subdivision K of the 2-sphere such that reading round from
the base point * for every 2-cell in K spells out the word

w(a) (c0-'ôc0)c1 ••• t\, U',,1«/ )<•„'. ••• c,"1

for some a eA,seefigure 8. Note that if this 2-cell has the opposite orien-
tation then the word spelt out is w(a~l).
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Figure 8

The 2-cell labelled by w(a) C.\ Cn — 2 cn — 1
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Now consider the traffic flow defined as follows. The car associated to
a 2-cell starts out from the base point * and proceeds in an anticlockwise

manner so that it takes a unit amount of time to reach the next corner. It
is clear that any crash must take place at a 0-cell. By the crash theorem
there are at least two total crashes so we can assume it takes place at a

0-cell where the angle labels multiply to 1. There are two cases to consider.

If the crash occurs at time 0 mod n then the clockwise labelling around
this 0-cell is c~la\Ca, c~la2ca, c~ lakca where axa2 • ' ' ak \ and

a 0 or a «. A simple calculation shows that the anticlockwise product
of the remaining angles of these k 2-cells is 1. So we may simplify the situation

by collapsing these k 2-cells to a point.
If the crash occurs at a time ^ 0 mod n then the clockwise labelling

around this 0-cell is c) 1 for some 0 < i < n and some k > 1 contradicting
the torsion free hypothesis.

Let H, H' be groups and let H -> H' be an isomorphism. We shall use

the notation to denote the image of h e H under 0. Similarly we shall

write ah: b~lab for conjugation.

Theorem 6.2 (Application to HNN extensions). Let H and H' be

two isomorphic subgroups of the group A under the isomorphism
h -> h*, h e H. Let B be a group and let w e A * B - A have torsion
free factors. Then the natural map

A (A, B I w~l hw h^, h e H)
is injective.

Proof. Consider the following groups

A' (A, t \ t~1 ht h^,h e H>,

A" (A, t, B \t~ lht h*> [a, t~1 w] 1, [t, w] \,h e H,a e A)
< A ', B I [a, t ~1 w] 1, [t, w] 1, a e A >,

A"' {A, B\w~lhw h^,h e H)

We can construct the following commuting diagram,

A'"
s

/ i y

A A A' 4
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where the maps a, ß,y and 5 are induced by inclusion. In order for y to
be a well defined homomorphism it is necessary to check that the

relation w~lhw h^,heH is a consequence of the relations t~lht
h**, [a, t~1 w] 1, [t, w] 1, h e H, a e A. But this follows because

w~lhw w~ltt~1htt~lw h^. Now a is injective
because A' is an HNN extension of A (see [DD, p. 33] or [Se, p. 9])
and ß is injective because of theorem 6.1. So ô is injective and this proves the

theorem.

Theorem 6.3. Let

(*) Ui{t) 1, / e 7

be a set of equations over the group A where the exponent sum of t
in each ut(t) is zero. Suppose w w(t) e A * (t) - A and the factors
of w are all torsion free. Then the set of equations

(**) Ui(w(t)) 1, / e /
has a solution over A if and only if the set (*) has a solution over A.

Proof. Let w{t) at where a e A has infinite order. Then a solution x
for Ui(w(t)) 1 defines a solution at for (*).

Conversely suppose x e A' is a solution of the set of equations
{ut{t) — 1 I / e /}. Let G be the subgroup of A' generated by

{x~naxn I a e A, n e Z}

Then A is a subgroup of G and G is a subgroup of

H - (G, 11 w~lgw g e G)

where g* x~lgx by theorem 6.2. Because of the exponent sum condition
ufw) 1, / e /.
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