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302 P. V. ARAUJO
3. (GEODESIC PARALLEL COORDINATES

In this section we consider an oriented, connected, C*° surface S. For the
sake of simplicity, we assume S is embedded in R® whenever convenient (of
course the hyperbolic plane cannot be embedded in R?, but our arguments
have a local character, involving only the computation of derivatives; and
there are surfaces in R® which are locally isometric to the hyperbolic plane).

We consider a regular closed Jordan curve (s) in § of constant width
W.If L is the perimeter of the curve, we extend ~(s) periodically by setting
v(s + L) = y(s).

We would like to say that the antipodal point p of p is situated along the
geodesic that cuts « orthogonally at p. But some care is necessary, and we
make an extra assumption on -y :

STANDING ASSUMPTION (SA). There exists € > 0 such that, for every
p €, the restriction of the exponential map exp, to

{veT,S:|v| <W+e}

is a diffeomorphism onto its image.

Condition SA ensures that there is exactly one minimizing geodesic between
any two points of v, and that v is indeed the boundary of some Jordan region
in S. On the hyperbolic plane, SA represents no restriction whatever, whereas
on the sphere of radius —\/I—E it is equivalent to the requirement that W < %
— and this is no strong restriction either, for in any case we would have
W < JE since the maximum (intrinsic) distance between distinct points on
the sphere is % :

CLamM 1. If a curve ~ of constant width VW satisfies SA then the
minimizing geodesic between any pair of antipodal points p, p intersects -y
orthogonally at both p and p.

Proof. Take a system of geodesic polar coordinates ®(p, /) centered at
p. If v(sp) = p then there exists 0 > 0 such that, for s € Jsop — 9,50 + [,
we can write y(s) = CD(p(s),Q(s)) for some differentiable functions p(s),
0(s). Our assumption implies that p(so) = W and p(s) < W for all s, and
therefore p/(so) = 0. Hence +'(so) = #'(s0) Py, which implies that  and the
radial (minimizing) geodesic from p to p cut each other orthogonally at p.
Reversing the roles of p and p we show that the intersection at p is also
orthogonal. [
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We have just observed that if p, p are antipodal points of -y then v is
inside the geodesic circle C(p, W) of centre p and radius W, and touches it
at the point p. As in the euclidean case, the geodesic curvature of C(p, W) at
p 1s a lower bound for the geodesic curvature of v at p, as we now proceed
to show. We assume that both curves are traversed counterclockwise (i.e., the
Jordan region bounded by ~ is always to our left as we move around ), and
recall that the coeficients E, F, G of the first fundamental form of ®(p, #)
are such that £=1 and F =0 (see [dC], p.287).

CLAIM 2. Let the coordinates of p be p =W, 6 = 0y, and denote by
kqe(p) and /~<g(p) the geodesic curvatures at p of v and C(p, V), respectively.
Then we have

G,

ko(p) > ky(p) = 2

(W, 60)
Q ,

FIGURE 3

Proof.  'We can reparametrize v in a neighbourhood of p by setting
Y(&) = @(p(t), 00 +1) for 1 €]-6,8[. Thus p(0) = W and, as in the proof of
Claim 1, p(7) attains a maximum at ¢ = 0, so that p/(0) = 0 and p"(0) < 0.
The geodesic curvature of v at fy(z‘) is given by

ko(t

o) =

/!
('), n@®)
[R4¢ >n2 4
where n(f) is the unit vector such that (v/(s), n(f)) is a positively oriented
orthogonal basis of T,;S. We have 7/(0) = ®,, and therefore n(0) = -@,,
IV©)|* = G, and

1
kg(p) = kg(0) = <7”(0), D,)-

Since 7"(0) = p"(0) D, + Dyg, it follows that
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1

1 1
S) kq(p) = —5/9"(0) - E<(D997(I)p> > _E<(D007(Dp>'

Our calculations also show that the right-hand side of (5) is just lzg(p). By

taking the derivative with respect to 6 of the equality (®y, d,) = 0, we obtain

(@gg, D,) = —%—Gp — and this, together with (5), proves our claim. (]

At this point we recall ([dC], p.289) that in Sx the coefficient G 1is
given by

1. . . 1. .
e sin?(VKp) if K>0; p?if K=0; — sinh*(v/—Kp) if K <0

— and thus in Sy Claim 2 reduces to:

The geodesic curvature ky(s) of a curve of constant width VW in Sk is
such that

(6) kg(s) > F(K, W),
where F(K, VW) is given by

VK cos(vVKW)
sin(v/K W)

v/ —K cosh(r/—KW) .
sinh(~—K W) yE<0.

1
if K>0; 35 if K=0;

Notice that we do not necessarily have k4(s) > 0: for K > 0 and
w > 5—\7}—1?, the lower bound in (6) is negative. Related to this is the fact that
not all curves of constant width in the sphere are convex (see the remark at
the end of this section).

Now we let n(s) be the unit vector field along ~(s) which 1s orthogonal
to ~'(s) and points to the interior of the region bounded by +, so that
(7’ (s), n(s)) is positively oriented. If we travel a distance }V along the geodesic
t — exp.,(¢n(s)) we reach the antipodal point I1(~(s)) of ~(s). In other

words,

(7) IT o 7(s) = exp., (Wn(s)) .

It is only natural to consider the map ¥(z,5) = exp.,,(—¢n(s)), where the
minus sign ensures that (‘W;,'¥;) is positively oriented for small z. This 1s not
really a parametrization, since it is not injective and may have singularities.
We define the coefficients £, F, G by

E=Y,¥), F=M",Y¥), ¢6=W¥.¥)"
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CLAM 3. The following equalities hold: € =1; F =0; G(0,s) =1
for all s € R.

Proof. For fixed s, the curve ¢ — W¥(z,s) is a geodesic parametrized with
constant speed ||n(s)|| = 1, and therefore £ = 1. The third equality is obvious.
To prove the second one, we observe that F(0,s) = <—n(s),fy’ (s)> =0 and

that

oF DY, 1 0&
_— bm— _— _—— = O
al- <an’ \Ils> + <\I]f7 \}‘Sf> < 8t ’ ‘{Is> + 2 85 ?

D\P . . . (44 9 2
where —at—t denotes the covariant derivative of the “velocity” vector field

t — W(t,s) along the geodesic t+— ¥(z,s) (which is identically zero by the
definition of a geodesic). [

In the neighbourhood of any point (z,s) where G is non-zero, the map
Y is a true parametrization, and by Claim 3 its coefficients £, F, G are
analogous to the coefficients E, F', G of the geodesic polar coordinates. Thus
the proof of Claim 2 shows that, provided ¥(z,s) agrees with the orientation
of S, the geodesic curvature of the curves ¢ = constant is given by

g o

26 G
in particular, setting ¢t = 0 and using Claim 3, we obtain

(8) (VG)i(0,5) = ky(s).

There exists a very useful formula for the Gaussian curvature K in terms
of the coefficients of an orthogonal parametrization ([dC], p. 237), which in

this case simplifies to
(\/—G)tr + K\/@ =0.

This formula holds whenever G(z,5) # 0. Turning our attention to Sg,
t — /G(t,s) is then the solution of the differential equation

9) ')+ Kx(t) =0

which, by Claim 3 and (8), satisfies the initial conditions x(0) = 1 and
x'(0) = kg(s). Thus we find that \/G(z,s) is given by :

(10) cos(VK 1) + k\g/(li{) sin(VKr)  ifK>0,
(11) 1+ tky(s) fK=0,
(12) cosh(+v/"K 1) + ~o®) sinh(vV—K#) ifK<O0.

V=K
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We are running into trouble here: formulas (10)-(12) may assume negative
values for # # 0, and /G is necessarily non-negative. However, we must keep
in mind that in any case G is a differentiable (C°°) function, as its definition
ensures. The only way to reconcile this with the fact that ¢ — /G(t,s) is a
solution of (9) whenever G(z,s) # 0 is that G(z,s) be equal to the square of
formulas (10)-(12) for all (z,s).

Let f be a lifting of the antipodal map II as in Lemma E. We can rewrite
(7) as

yof(s) =¥(=W,s).

Taking the derivative of both sides we obtain f’(s)~’ ( f(s)) = ¥|(—w.5, and
from here we get

(13) [F9)]* = G(—W,s).

The reader should now check that inequality (6) yields that, for t = —W,
each of the formulas (10)-(12) is non-positive for all s € R. Since f’(s) > 0,
(13) and the above discussion imply that f’(s) is equal to

ZOp . .

(14) N sin(vVKW) — cos(WVKW)  if K>0,

(15) Wkg(s) — 1 if K=0,
kq(s) . B — _

(16) ﬁ sinh(v/—K W) — cosh(v/ —K W) if K <O0.

Formula (15) was already known from §2. In the next section we use formulas
(14) and (16) to prove Theorem B and Corollary C. As an appetizer we now
prove Theorem D.

Proof of Theorem D. This is a simple consequence of the uniqueness part
of Lemma E. Under our hypothesis, a possible lifting of I1 is f(s) = s+ %L,
and therefore f'(s) = 1 for all s € R. Each of the formulas (14)-(16) then
implies that the geodesic curvature k, of 7 is constant. Substituting the
value of k, in (10)-(12) we find that Q(—%W,S) = 0 for all s € R. Hence
S ‘P(—%W,s) is constant, say equal to p, and therefore v is the geodesic
circle C(p, %W). []
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REMARK. We have so far excluded from our discussion curves of constant
width = on the sphere x*+y?+72 =+ (K > 0). Although our methods do
not apply to these curves, they are easily dealt with, being characterized as
the Jordan curves ~ which remain invariant under the isometry ¢: Sx — Sk
given by g(x,y,z) = (—x,—y, —z). This map g exchanges the two regions
bounded by v in Sg (so these regions have the same area 2%), and also
exchanges the two arcs into which ~ is divided by any pair of antipodal
points (so these two arcs have the same length). Hence Theorem D is not
valid in this case. If we consider (for small d) a parallel curve v; to 7y
then v has constant width % — 2d. Since <y has arbitrarily long perimeter
and does not need to be convex, the same applies to ; (but the longer the
perimeter of -y, the smaller 4 must be in order to ensure that -, has no
self-intersections).

4. PROOF OF THE MAIN RESULTS

We have now gathered all the necessary tools, and the proofs of Theorem B
and Corollary C are a simple matter.

Proof of Theorem B. We assume K > 0, the case K < 0 being similar.
Using (14) we have

L . L
L =f(L) —£0) = /0 f(s)ds = ﬂ% / ky(s)ds — L cos(vVE W),
0

and therefore

sin(v K W) &
[ —
VK {1+ cos(vVKW)} Jo () _dS
1 vKW
—ﬁtan< ) ){ZW—KA}

by the Gauss-Bonnet theorem. [

Proof of Corollary C. First we treat the case K > 0. From Theorem B

2 . . . .
we see that A < <%, which means that the region we are interested in has
the smallest area of the two regions bounded by v in Sg. We also assume




	3. Geodesic parallel coordinates

