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iterated 2r times. Noting that I, persists in w* it is easy to argue that
w(A *6:") = w(A) is impossible; the contradiction. [

J 7+1
e ® ] —
A
FIGURE 4

The action of *cjz-’ on a (J, k)-arc in case r = 2

We now turn to the proof of Theorem 2.2. It has already been observed
that (e) = (d) = (a), and it is obvious that (a) = (¢) = (b). So it remains to
establish that (&) = (e). Thus we assume that, for some r # 0, 6B = Bo}.
Since the algebraic crossing number of any two strings of a braid is a
well-defined braid invariant, this equation is possible only if {j,j+ 1} *f
= {k, k + 1}. Now, noting that B ~'c;B = o} and that ¢} has a (k, k)-band,
we conclude that there is a proper ribbon for B“GJ’.B from [k, k+ 1] X O
to [k,k+ 1] x 1. Define A =B=*[k,k+1] =]k, k+1]*p 1. Then we
may assume (possibly after an isotopy) that the planes C x 1/3 and
C X 2/3 cut the ribbon in the arcs A X 1/3 and A X 2/3. Moreover, the
middle third of the ribbon, and Proposition 1.1, imply that 4 xc} = A.
By Lemma 3.2, A = [j,/ + 1] and the theorem is proved. [

4, CENTRALISERS OF BRAID SUBGROUPS
We have established the following.

4.1 THEOREM. The centraliser in B, of the generator o; 1is the
subgroup of all braids which have (j, j)-bands. This subgroup is isomorphic
to B’ _|xZ where B’ _, s the subgroup of B,_, consisting of all
(n — 1)-braids whose permutations stabilise j. [l

The goal of this section is to describe the centraliser of B, in B,, r < n,
which we will call C(r, n). Here B, is the r-string braid group with its usual

inclusion in B,, namely as the subgroup generated by ¢;...0,_;.
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4.2 THEOREM. The centraliser C(r,n) of B, in B, consists of
all n-braids in which the first r strings lie on a ribbon, disjoint from the
other strings, and which intersects C x 0 and C X 1 in exactly the
straight line intervals from [1,r] X 0 and [1,r] X 1 (up to isotopy).

Proof. A braid B is in C(r, n) if and only if it commutes with each
oj,1<j<r—1. Thus [j,j+1*B=[/j+1], 1<j<r—-1 and so
[1,r]*P = [1, r], up to isotopy fixing {1, ...,n}. O

It follows that C(r, n) consists of all n-braids constructible as follows.
Let k=n—-r+1 and consider the subgroup B ,l( of k-braids whose
associated permutation fixes 1. Then replace the first string of a braid
in B ,1{ by r parallel strings lying on a ribbon along that string. The ribbon
may be twisted by some integral multiple of 27 (or © in the case r = 2);
such braids are precisely the central elements of B,.

4.3 'THEOREM. The centraliser C(r,n) is isomorphic to the direct
product B, .. xZ. []

n—r+

A PRESENTATION OF C(r,n). In order to establish a set of generators
and defining relations for C(r, n) we recall results of Chow [Ch] regarding
B,. This subgroup of B, is generated by o,,...,04_1, together with ele-
ments a,, ..., a; defined by

¢ — _l _1 e o o —1 2 e o o
These generators satisfy the usual braid relations:
0;6;=0,0;, |i—j|>1

GiG;i+106; =0;4+10i0;+1

as well as the following, for i =2, ...,k — 1:

1

c,-ajc,-‘ = daj, ‘]il,l+ 1
-1
G;a;0; = Qqj+q
~1 —1
6idi+10; =4a;,,02,Q;4, .

In fact these are defining relations for B,I{. Chow also noted that the sub-
group of B, generated by the g, is a normal subgroup (as is clear from the
above relations), in fact a free group on the generators a;, and that B,lc
could be regarded as the semidirect product of that free subgroup with the
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subgroup generated by 6, ... 6,_,, the latter group clearly isomorphic with
the braid group on k — 1 strings.

Applying this to our situation, for each i =1, ...,n — r, let A, ,; be the
n-braid resulting from replacing the first string of the k-braid a;, defined
above, by r parallel strings which lie on an untwisted band. Specifically,

_ e S T
Ai=(0, 6, G,y i-20,+i-1)(0,_,0, C,vi 3C0r+i-2)

-1 -1 -1
T (Gl G, "' G,‘_IG[) X (G,’G,‘_l 61) (0i+10i-.. 02)

e (Gr+i—10r+i—2 e Gr)

Also let C denote the well-known generator of the centre of the r-string
braid group, namely C = o, if r = 2 and in case r > 2:

C=(0,6,"""6,-1)".

FIGURE 5

Special generators of C(r, n)

4.4 THEOREM. The centraliser C(r,n) of B, in B, has the
generators:

Gr+150r4+2ssCp-1sArs1, ..., A4A,,C
and defining relations:

G;0; = 6,0, |i—j|>1

0;0;+10;=0;+10i0;+

ciAjc; ' =A;,, Jj#Fii+1

GiAiGi_l =A;41

GiAi+IGj_1 = Ai—+11AiAi+l

Co;=o0;C
CA;,=A,C.

(Subscripts ranging over all values for which the symbols are in the list of
generators.) L[]
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