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iterated 2r times. Noting that Ip persists in w* it is easy to argue that
w(A * ojr) w(A) is impossible; the contradiction.

The action of *Ojr on a (j, £)-arc in case r 2

We now turn to the proof of Theorem 2.2. It has already been observed
that (e) => (d) => (a), and it is obvious that (a) => (c) =» (b). So it remains to
establish that (b) => (e). Thus we assume that, for some r ^ 0, o^ß ßo£.
Since the algebraic crossing number of any two strings of a braid is a

well-defined braid invariant, this equation is possible only if {y, j + 1} * ß

{k,k + 1}. Now, noting that ß ~1 o^ß ork and that ark has a (k, k)-band,
we conclude that there is a proper ribbon for ß-1öyß from [k, k + 1] X 0

to [k, k + 1] x 1. Define A ß *[k,k + 1] [k,k + 1] * ß ~1. Then we

may assume (possibly after an isotopy) that the planes C x 1/3 and
C x 2/3 cut the ribbon in the arcs A x 1/3 and A x 2/3. Moreover, the
middle third of the ribbon, and Proposition 1.1, imply that A * Gj A.
By Lemma 3.2, A *= [j,j + 1] and the theorem is proved.

4. Centralisers of braid subgroups

We have established the following.

4.1 Theorem. The centraliser in Bn of the generator Gj is the

subgroup of all braids which have (jj)-bands. This subgroup is isomorphic
to Bjn_lx Z where BJn_l is the subgroup of Bn^x consisting of all
(n - 1 )-braids whose permutations stabilise j.

The goal of this section is to describe the centraliser of Br in Bn, r ^ n,
which we will call C(r, n). Here Br is the ^-string braid group with its usual

inclusion in Bn, namely as the subgroup generated by Oi or_i.
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4.2 Theorem. The centraliser C(r, n) of Br in Bn consists of
all n-braids in which the first r strings lie on a ribbon, disjoint from the

other strings, and which intersects C x 0 and Cxi in exactly the

straight line intervals from [1, r] x 0 and [1, r] x 1 (up to isotopy).

Proof. A braid ß is in C(r, n) if and only if it commutes with each

Gy, 1. Thus [jj + 1] * ß [jj + 1], l^j^r-l and so

[1, r] * ß [1, r], up to isotopy fixing {1, «}.

It follows that C(r, n) consists of all «-braids constructible as follows.
Let k n - r + 1 and consider the subgroup Blk of k-braids whose

associated permutation fixes 1. Then replace the first string of a braid
in B\ by r parallel strings lying on a ribbon along that string. The ribbon

may be twisted by some integral multiple of In (or % in the case r - 2);
such braids are precisely the central elements of Br.

4.3 Theorem. The centraliser C(r, n) is isomorphic to the direct
product Bln_r+l x Z.

A presentation of C(r, n). In order to establish a set of generators
and defining relations for C(r, n) we recall results of Chow [Ch] regarding
B\. This subgroup of Bk is generated by c±%...9ak-l9 together with
elements a2, ak defined by

^ o r
1

O 2
1

• • • o ^2 (5 O; _ 2
• • • 02 O i

These generators satisfy the usual braid relations:

OiGj GjGi, I i - j I > 1

G / G / + | OI O ,• + i G / G ,• 4, j

as well as the following, for / 2, k — 1:

g jaj g j aj, j i, i + 1

O/û/ g j a i +1

0/Ö/+1 of1 ^r+\aiai+i.

In fact these are defining relations for 5}. Chow also noted that the
subgroup of B\ generated by the a, is a normal subgroup (as is clear from the
above relations), in fact a free group on the generators a-,, and that B\
could be regarded as the semidirect product of that free subgroup with the
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subgroup generated by o2... ok-i, the latter group clearly isomorphic with
the braid group on k - 1 strings.

Applying this to our situation, for each i 1, n - r, let Ar + i be the
«-braid resulting from replacing the first string of the k-braid ai9 defined
above, by r parallel strings which lie on an untwisted band. Specifically,

Ar+i O r Or+1 ' * * G r+ i_2<3r+ i- l) G r _ j O r
* * * Or + /'_3Gr + /_2)

• • • • • • o, CT,) X G ; O ; _ j
• • • Ol) O / + iG/ • • • o2)

G /• + /-] O r + /_ 2
* ' * G r

Also let C denote the well-known generator of the centre of the r-string
braid group, namely C Oi if r 2 and in case r > 2:

C (oiG2 • * • o,_i)r

J

r
1

4.4 Theorem. The centraliser C(r, n) of Br in Bn has the

generators:

Gr + l s &r + 2 î •••? Gn — I A:r4- 1 • • • 5 zl^ C

and defining relations:

OiOj ojOi, I / — y I > 1

G / O / + 1 G / O / + 1 O / O / + 1

OiAjO;1 Ay, j ^ /, / + 1

O/A/O,"1 A/+i
g / + 1 ^ / A/ + ^ A / A / + 1

Co, O/C

CA, - A/C

(Subscripts ranging over all values for which the symbols are in the list of
generators.)

Figure 5

Special generators of C(r, n)
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