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2. THE INDEX OF AN ELLIPTIC COMPLEX

An elliptic complex (E,d) over a closed, oriented, n dimensional Rieman-
nian manifold M consists of :

a) a finite collection of finite dimensional complex vector bundles

E07E1 "')Ek

b) a collection of smooth differential operators

di : C(E;) — CP(Eit1)

c) The operators d; are required to satisfy

dix1-di =0

and an additional technical condition called ellipticity. This condition makes
possible the construction a virtual bundle, i.e. the formal difference of two
vector bundles, over TM which carries a great deal of information about (£, d).
This virtual bundle o(E,d) is called the symbol of (E,d) and it defines a

class |o(E,d)], also called the symbol, in the K theory with compact supports
of TM.

EXAMPLES

1. The de Rham complex, where

TcM = complexified cotangent bundle of M
E; = A'TEM the ith exterior power of TeM
C*°(E;) = smooth complex i forms on M

d; = the usual exterior derivative

2. The Dolbeault complex
3. The Signature complex (see [AS])
4. The twisted Spin complex.




272 J.L. HEITSCH

SOME FACTS ABOUT ELLIPTIC COMPLEXES
Set H'(E,d) = kerd;/image d;_;. If M is compact, then dim H'(E,d)
< 00, and we may define

k
Index(E,d) = > (—1)' dim H'(E,d) .
=0

This is a very important invariant. Special cases of (E,d) yield the
1. Euler class x(M) of M (de Rham complex)

2. Signature of M (Signature complex)

3. Euler class x(M, V) (Dolbeault complex)

4. A genus of M (Spin complex).

The Atiyah-Singer Index Theorem tells how to compute this invariant from
topological information about M and (E,d). In particular, it says

THEOREM 2.1 ([AS)).

Index(E, d) = / Td(TM ®@x C) - ch (o(E,d)) .
M

The theorems quoted above are all special cases of this theorem. We now
give an idea of how to prove this deep and important theorem.

On each E; choose an Hermitian inner product denoted ( , );. This induces
an inner product ( , ); on C*°(E;) by the formula

(s1,52)i = /(S1(X),Sz(X))idX-

M

Using ( , ); we define the adjoints
d; : C(E;) — C™(Ei—1)

by
(s1,d]s2)i—1 = (di—151, $2)i

where
s1 € CP(Ei—1), 52 € CT(E).

The Laplacian A; : C*°(E;) — C°°(E;) is defined by
A,‘ = di_ld? -t d;k+1di ,
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and it extends to a densely defined operator of L?(E;), the space of L? sections
of E;, as follows. A; is a diagonalizable operator, and any eigenvalue A of
A; must be real and nonnegative. If M is compact there is a sequence of real
numbers

O= X< i< <, hm)\j:oo

J—00
such that for each E; there is a sequence of finite dimensional subspaces of
C™(E;), denoted
Ei(/\O)aEi()‘l)aEi(/\2)7 + e

so that for any s € E;()\))
Ais = Ajs.

In addition

LE) = D E).-

j=0

Thus each element in L?(E;) can be written as a (possibly infinite) sum of
eigen functions and we may think of A; as the infinite diagonal matrix

_O —

A2

OTHER PROPERTIES OF A;

1) E;j(Ao) =kerA; C kerd; and the inclusion of E:(M\o) in kerd; induces an
isomorphism
Ei(N) ~ H(E,d),
SO

k
Index(E, d) = Z(— 1) dim E;(\) .
=0
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2) For each A\; > 0, the sequence

0= Eo(\) S B0 25 - 25 B(y) — 0

1S exact.
As a corollary, we have immediately

k
D (—1)Y dimE;(\) =0

i=0

for all A; > 0. These results rely on the fact that M is compact. For a general
reference for the above facts, see [Wal.
The fact that A; is diagonal implies that for any function f : R — R, we
may define
FA) - LE) — LXE,)

by : for each s € E;())) set f(A))s = f(\)s. i.e. the “matrix” of f(4;) is

[ f(0)

F(0)
F(AD)

f(A)

Note also that if f(x) goes to zero rapidly enough as x — oo, then the trace
of f(A;), thought of as the usual trace applied to the infinite matrix above,
will be a finite number. In this case, we say f(A;) is of trace class. See [RS].

We are interested in the family of functions f;(x) =e™™, ¢ > 0. In fact,

A makes sense and we have

even if M is not compact, e~
THEOREM 2.2 (Seeley, [S]). For t >0, e~ ™ is a smoothing operator on
L*(E;) and so if M is compact it is of trace class.

Let m; : M x M — M be projection on the jth factor, j = 1,2. To say an
operator A on L*(E;) is a smoothing operator means that there is a smooth
section k(x,y) of the bundle Hom(m; E;, 77E;) over M x M, so that for all
s € LX(Ey).
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49 = [ Kxn)s0)dy.
M
Note that k(x,y) is a linear map from E;,, the fiber over y, to E;,, the fiber
over x, so k(x,x): E;y — E;, has a well defined trace. The section k(x,y)
is called the Schwartz kernel of A. Any smoothing operator on a compact
manifold is of trace class and its trace is given by tr(A) = f tr k(x,x)dx.

M
To see this for =™, note that its Schwartz kernel ki(x,y) must be given as
follows : For each ); choose on orthonormal basis ¢?, v=1,..., dimEi(}\)
of EI(A]) Then
Kx,y) =Y ™™ Zabj’(x)cb}’(y)J .
Jj=0 v

Here kj(x,y):E;y — E;, acts on w € E;, by

ke yyw =) " e™™ {Z@;f@), w), - cé}’(x)} :

j=0 v

The trace of ki(x,x) is then given by

S ey [Z (670, qﬁ}’(x)),}

Jj=0 v
and the result follows by integrating over M.

k
Now, since e = 1 for all 7, we have e ™ S (—1) dimE;()\) =
i=0

k
Index(E,d), for all 7. In addition e~ 3" (1)’ dim E;()\;) = 0 for j > 0, and

i=0
for all 7. Thus we have

THEOREM 2.3. If M is compact, then for all t > 0,

k
D (=™ dim E(\)

™3

Index(E, d) =
=0 Li=0
k| oo
= D (—1e™™ dim Ei(\)
i=0 L_j=0
k
=Y (=1ir e,
i=0
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The Index Theorem now follows from two other results.

1)

2)

k

Set k/(x) = >_(—1)'tr ki(x,x). Then for ¢ near 0, k,(x) has an asymptotic
i=0

expansion of the form

k()= > ¥ a;x).

jz—n

As [ k(x)dx = Zfzo(—l)itr e~ = Index(E,d) is independent of t,
M
we have

Index(E,d) = / ao(x)dx .
M

Now, for any twisted Dirac operator D} , one can prove that the differential
n form ap(x)dx 1s the degree n part of the form constructed from the
connections on TM and F which represents A(TM)-ch(F). Thus, we have

Index(D}) = / A(TM) - ch(F) .
M

Index (E,d) depends only on the K theory class [o(E,d)]. Given this and
the formula above for Index(D}?), one may use well known arguments
in K theory to extend the result in 1. to all elliptic complexes. The
essential fact is that the symbols of twisted Dirac operators generate the
K theory with compact supports of TM as an algebra over the K theory
of M.

The difference between the formula in 1. and that in the Atiyah-Singer

Index Theorem is accounted for by the fact that for the twisted Spin complex
(E* ® F,Dp),

ch(o(E* ® F,D¥)) = ch(E*, D) - ch(F)

and

Td(TM ®g C) - ch(o(E*, DY) = A(TM).
For more on this see [ABP], [B], [G], [Gi1], and [P].
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