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ON THE GAUSS-BONNET FORMULA
FOR LOCALLY SYMMETRIC SPACES OF NONCOMPACT TYPE

by Enrico LEUZINGER

ABSTRACT. Let X be a Riemannian symmetric space of noncompact type and
rank > 2 and let T’ be a non-uniform, irreducible lattice in the group of isometries
of X. A Gauss-Bonnet formula for the locally symmetric quotlent V =T\X was first
proved by G. Harder. We present a new simple proof which is based on an exhaustion
of V by Riemannian polyhedra with uniformly bounded second fundamental forms.

INTRODUCTION

The generalized Gauss-Bonnet theorem of C.B. Allendoerfer, A. Weil
and S.S. Chern asserts that the Euler characteristic of a closed Riemannian

manifold (M, g) is given by
X(M) — / Wgq
M

where the Gauss-Bonnet-Chern form w, = W¥,dv, is (locally) computable
from the metric g (see [AW], [C]).

In several articles J. Cheeger and M. Gromov investigated the Gauss-Bonnet
theorem for open complete Riemannian manifolds with bounded sectional
curvature and finite volume. They in particular showed that such manifolds
M" admit an exhaustion by compact manifolds with smooth boundary, M”,
such that Vol(OM?) — 0 (i — oo) and for which the second fundamental forms
[I(OM!") are uniformly bounded (see [CG1], [CG2], [CG3] and also [G] 4.5.C).
By a formula of Chern one has x(M?) = f M Wo+ f oy Tl where 7); is a certain
form on the boundary OM? (see [C]). The above two properties imply that
lim;_ o [ onn i = 0 and hence x(M}) = [, w, for sufficiently large i. As a

consequence the Gauss-Bonnet theorem holds whenever x(M!) = x(M") for
all sufficiently large i.

1991 Mathematics Subject Classification : 22E40, 53C35.



202 E. LEUZINGER

We now consider a Riemannian symmetric space X of noncompact type and
rank > 2 and a non-uniform, torsion-free lattice I" in the group of isometries
of X. The quotient V =T'\X is a locally symmetric space with bounded non-
positive sectional curvature and finite volume. Locally symmetric spaces thus
provide important examples for the above class considered by Cheeger and
Gromov. If T is irreducible a remarkable theorem of G. A. Margulis asserts that
I' is arithmetic (see [Z], Ch. 6). For quotients of such lattices the Gauss-Bonnet
formula was first proved by G. Harder (see [H]). Following M. S. Raghunathan
[R1] he explicitly constructed a smooth exhaustion function ~ on V which
has no critical points outside a compact set. A certain defect of the func-
tion 4, however, is the quite complicated geometry of its sublevel sets (their
second fundamental forms, for instance, are not uniformly bounded). As
a consequence the proof given in [H] involves rather long and technical
estimates.

The purpose of the present note is two-fold. On the one hand to give a
new, more geometric proof of the Gauss-Bonnet theorem for locally symmetric
spaces, which avoids the technically complicated estimates of [H]. And, on
the other hand, to provide an explicit (and independent) illustration of general

results in [CG3].

Our approach is based on an exhaustion V = [(J,V(s) of locally
symmetric spaces not by smooth submanifolds but by polyhedra, i.e. compact
submanifolds with corners (see [L2]). The corners which appear here are
naturally related to the geometry of V at infinity (and therefore should not
be smoothed). Moreover, for each s > 0 the polyhedron V(s) is a strong
deformation retract of V (see [L3]). The essential new feature of this exhaustion
is that the boundaries of OV(s) consist of subpolyhedra of V(s) which are
projections of pieces of horospheres in X. As a consequence their second
fundamental forms are uniformly bounded. This property together with the
generalized Gauss-Bonnet formula for Riemannian polyhedra of Allendoerfer-
Weil and Chern leads to a considerably simplified new proof of the Gauss-
Bonnet theorem for locally symmetric spaces (see Theorem 4.1).

NOTATION. Explicit constants are irrelevant for our purpose. If f and g
are positive real valued functions on a set S we thus simply write f < g if
there is a constant ¢ > 0 such that f(s) < cg(s) for all s € S.
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1. THE FORMULA OF ALLENDOERFER AND WEIL

A C* (resp. C*) manifold with corners is a topological Hausdortf space
locally modeled upon a product of lines and half-lines and such that coordinate
changes are of class C®° (resp. C*). For precise definitions and basic
information about this concept we refer to [DH]. A Riemannian polyhedron
is a compact manifold with corners equipped with a Riemannian metric.

Let P” be an n-dimensional Riemannian polyhedron with boundary
consisting of a finite family of lower dimensional subpolyhedra

PrtO0<k<n-1

and with Riemannian metric induced from P". The outer angle O(p) at a
point p of Pg_k is defined as the set of all unit tangent vectors v € T,P"
such that (v,w), <0 for all w in the tangent cone of P" at p. Note that
O(p) is a spherical cell bounded by “great spheres” in the (k— 1)-dimensional
unit sphere of the normal space of Pg—k C P" at p. In [AW] Allendoerfer
and Weil define a certain real valued function Wg ; on the outer angles of
Pr*. The explicit form of this function will not be needed in this paper. We
shall only use the fact that Wg ; is locally computable from the components
of the metric and the curvature tensor of P" and from the components of the
second fundamental forms Ilz(p),Z € O(p), of Pg“k in P". Let Wdv denote
the Gauss-Bonnet-Chern form on P" and dvg (resp. dwi_;) the volume
element of Pf (resp. of the standard unit sphere S*~!). The inner Euler
characteristic x" of P" is by definition the Euler characteristic of the open

complex consisting of all inner cells in an arbitrary simplicial subdivision
of P".

We can now state the generalized Gauss-Bonnet formula of Allendoerfer-
Weil for Riemannian polyhedra (see [AW]).

PROPOSITION 1.1.  Let P" be a Riemannian polyhedron with boundary

consisting of a finite family of subpolyhedra Pg_k . Then the inner Euler
characteristic of P" is given by

(_l)nxl(/])”) o / Ydu -+ Z Z/ ( lPE,k du}k_l) d'UE(p) .
" k=1 E JPE’

OWw)
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2. AN EXHAUSTION OF LOCALLY SYMMETRIC SPACES

Let X be a Riemannian symmetric space of noncompact type and rank > 2
and let I' be a non-uniform, torsion-free lattice in the group of isometries
of X. In this section we briefly describe the basic features of an exhaustion
of the locally symmetric space V = I''\X by Riemannian polyhedra, which
was previously constructed in [L2].

The idea i1s to work with a fundamental set 2 C X for the discrete
(arithmetic) group I'. Such “coarse” fundamental domains are provided by
reduction theory; they are finite unions of translates of so-called Siegel sets.
We begin with reviewing some facts about linear algebraic groups and set
up the notation. Roughly speaking, the lattice I" determines a “(J-structure”
on the real Lie group of isometries of X such that I'" is given by integer
matrices. The symmetric space X in turn inherits canonical parametrizations
adopted to this structure (generalized horocyclic coordinates). Siegel sets are
then defined with respect to such parametrizations.

2.1. REDUCTION THEORY AND GEOMETRY AT INFINITY

We denote by G the identity component of the group of isometries of X ;
it 1s a connected, semisimple Lie group with trivial center. We shall always
assume in the following that the non-uniform lattice I" is irreducible (see [R2]
5.20). Then, by the arithmeticity theorem of Margulis, there is a connected
semisimple linear algebraic group G defined over (), (D-embedded in a general
linear group GL(N,C), and a Lie group isomorphism p : G — G(R)? such
that p(I') is arithmetic, i.e. p(I') C G(Q) C GL(N, C) is commensurable with
the group G(Z) = GNGL(N,Z) (see [Z] 3.1.6 and 6.1.10). The symmetric
space X can be recovered as the manifold of maximal compact subgroups
of the identity component of the group G(R) = G NGL(N,R) of R-rational
points of G. For simplicity we will always identify G with G(R)® and T
with p(T).

Let S (resp. T) be a maximal @-split (resp. R-split) algebraic torus
of G, ie. a subgroup of G which is isomorphic over @ (resp. R) to
the direct product of ¢ (resp. r > ¢g) copies of C*. All such tori are
conjugate under G(Q) = G N GL(N,Q) (resp. G(R)) and their common
dimension ¢ (resp. r) is called the Q-rank (resp. R-rank) of G. The identity
component of S(R) (resp. T(R)) will be denoted by A (resp. Ap), the
corresponding Lie algebras by a (resp. ag). The R-rank of G coincides with
the rank of the symmetric space X, i.e. the maximal dimension of totally
geodesic flat subspaces. The choice of a maximal compact subgroup K of G
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is equivalent to the choice of a base point xo of X. We can choose K
with Lie algebra ¢ so that under the corresponding Cartan decomposition
g = t@p of the Lie algebra g of G we have a C ag C p = Ty X.
Here o is maximal abelian in P, i.e. the tangent space at Xxp of the
(maximal R-) flat Ag - xo in X. The pair of Lie algebras (g, ap) gives
rise to the root system r® of the symmetric space. Similarly there is a
system of Q-roots @ associated to the pair (g,a) (see [B3] §21). It is
always possible to choose orderings of (@ and g® such that the restrictions
of simple R-roots of g® to a are either simple Q-roots of @@, i.e. the

elements of a basis A = @A of @@, or zero (see [BT] 6.8). The basis

rA defines a closed R-Weyl chamber (10+ in ap and A then determines a

closed Q-Weyl chamber at = {H € a|a(H) >0, foral ac€ A} in a.
We set AT = expat (resp. g =expag ). A Q-Weyl chamber in X is a
translate of the basic chamber A+ - xy C AaL - xo. The elements of A are
differentials of characters (defined over Q) of the maximal Q-split torus S.
It is convenient to identify the elements of A also with such characters. When
restricted to A their values are denoted by a(a) (a € A,a € A). Notice that
AT ={acA|a(@)>1 forall acA}.

A closed subgroup P of G defined over Q is a parabolic Q-subgroup
if G/P is a projective variety (see [B3] §11). A parabolic Q-subgroup P of
G = G(R)" is by definition the intersection of G with a parabolic Q-subgroup
of G (see [BS]). The conjugacy classes under G (Q) of parabolic (Q-subgroups
are in one-to-one correspondence with the subsets ® of the (chosen) set A
of simple @Q-roots; they are represented by the standard parabolic Q-sub-
groups Pg of G (see [B3] §21.11). The corresponding standard parabolic
(QQ-subgroups of G are denoted by Pg. The minimal parabolic subgroup
P = Pz has a decomposition P = UMA, where U is unipotent and M
is reductive; A centralizes M and normalizes U (see [B1]). This yields a
(generalized) Iwasawa decomposition for G, i.e. G = P-K = UMAK , which
implies that P acts transitively on the symmetric space X. The intersection
of the maximal compact subgroup K of G with M is maximal compact
in M and the quotient Z = M/(K N M) is (in general) the Riemannian
product of a symmetric space of noncompact type by a (flat) Euclidean space.
Let 7: M — Z be the natural projection. Then the “horocyclic coordinate

i

map
p:Y=UXZXxA—X : (u,T(m),a) — Uma - X

is an isomorphism of analytic manifolds (see [BS] or [B2]).

e
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A generalized Siegel set S =S, » in X (relative to the -Weyl chamber
At - xg) is a subset of X of the form Sw,r = wA; - xp where w is relatively
compact in UM and, for 7 > 0, A, ={a €A | afa) > 7, a € A}. If
we define ag € A by a(ay) = 7 for all o € A, then A, = Ajag = A_+ao
and C = A, -xp C S is a (translate of a) (J-Weyl chamber in X. Siegel
sets provide the building blocks for (approximate) fundamental domains for
arithmetic groups. A subset Q C X is called a fundamental set for an arithmetic
group I' if the following two conditions hold

i) X=T-Q:
(i) for every g € G(Q) the set {y € T'| gQN~yQ # @} is finite.

The existence of fundamental sets is guaranteed by reduction theory for
arithmetic groups (see [B1] §13 and §15).

PROPOSITION 2.1 (Borel, Harish-Chandra). Let G be a semisimple al-
gebraic group defined over ) with associated Riemannian symmetric space
X = G/K. Let P be a minimal parabolic Q-subgroup of G and let T be
an arithmetic subgroup of G(Q). Then there exists a generalized Siegel set
S = S+ (with respect to AT -xy) such that, for a (fixed) set {g:|1 <i<m}
of representatives of the finite set of double cosets T\G(Q)/P(Q), the union

Q=" ¢S is a fundamental set (of finite volume) for T in X.

It will be useful in the sequel to dispose of geometric interpretations of
the above algebraic concepts and assertions.

First recall that the symmetric space X, as a Riemannian manifold of
nonpositive curvature, has an ideal boundary at infinity O.X. The latter
is defined as the set of equivalence classes of asymptotic geodesic rays
(see [BGS]). In the same way one also defines the ideal boundary at infinity
OsoV of V =T\X. If T is an arithmetic lattice in a group G of Q-rank
g = 1, the boundary 0.,V of the associated locally symmetric space consists
of m points (corresponding to the cusps), where m is as in Proposition 2.1.
For @-rank g > 2 it turns out that 0.,V is isomorphic to a finite simplicial
complex I'\|7|, a geometric realization of the Tits building of G modulo T
(see [JM] and [L1]). We recall the construction of the latter.

Let P be the set of all parabolic {)-subgroups of G. The conjugacy classes
of elements of PP are in one-to-one correspondence with the subsets © of the
set A of simple Q-roots. Every conjugacy class has a standard representative
denoted by Pg. One can show that the sets of double cosets I'\G(Q)/Pe(Q)
are finite for all ® (see [B1], §15.6). Let A = [ey,...,e,] C R? denote a
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standard geometric g—1 simplex (¢ = Q-rank of G). If A = {ay,... a4} and
A—0O={a;,...,a} with 1 <ip <...<ig < g, we define the boundary
simplex A(®) of A as A(®) = [e;y,. . ,e;,]. Let P be a minimal parabolic
Q-subgroup of G and let the set I'\G(Q)/P(Q) be 1‘epresemed by {q1,---Gm}
(see Proposition 2.1). We take m copies N = [el, ... ,eh] of A with faces
/N (®) corresponding to ©. The corresponding homeomorphlsms A~ /N are
denoted by ¢;. The simplicial complex I'\|7|, which provides a geometric
realization of the quotient of the Tits building of G modulo I', is constructed
from the simplices A!,...,A™ through the following incidence relations:

Two simplices A/ and A are pasted together along the faces /(@) and
A!(®) by the homeomorphism ¢; o gpl_l | Ay if and only if

I'qiPo(Q) = I'q/Pe(Q).

We remark that the points of I'\|7| are in one-to-one correspondence with
equivalence classes of geodesic rays in the locally symmetric space V = X
(see [Hat], [L1] and [IM]).

2.2. AN EXHAUSTION BY POLYHEDRA

We index the “edges” of the Weyl chamber at (or equivalently of AT x)
by simple (Q-roots. More precisely, the edges of At -x, are given by geodesic
rays cqo(f) = exp(tH,) - xo where H, € at, ||Hy|| = 1 and B(H,) = 0
for 6 # a (o, € A). We further write ¢, for the edges qrapc, of
the chambers ¢;C in the fundamental set € (see Section 2.1 for the notation).
If a geodesic ray ¢ represents a point z € 0,X we write z = c(c0). The
group G act naturally on 0,.X through g-c(c0) = (g-¢)(00). For every o € A
the isotropy group of c,(co) under that action coincides with the (maximal)
parabolic subgroups Pp_g,y introduced above (see [L2] Lemma 1.2).

To a geodesic ray c: [0,00) — X (parametrized by arc-length) which
represents a point z in the ideal boundary 0..X of X is associated a Busemann
function on X at z given by

he: X — R 5 he(x) = lim [d(x,c(n) —1].

The level sets of a Busemann function are horospheres, which foliate the
symmetric space. We denote the Busemann functions which correspond to the
rays Cro, by hy.. Note that Ay, (cka(t)) tends to —oo if the arc-length 7 of
the geodesic ¢, tends to +co.

In contrast to an exact fundamental domain there are not only points on the
boundary of a fundamental set Q but possibly also interior points which are
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identified under the action of I". However, there is only a finite set of isometries
v €' with yQ N Q # @. Furthermore it suffices to look at the (finite)
set D of those 7 for which this intersection is not relatively compact in
X (all other intersections are contained in some compact subset of Q). It
turns out that every v € D has the crucial property that there are indices
i,j such that qj_lfyql- 1s parabolic i.e. fixes at least one point in the ideal
boundary O..X (see [L.2] Proposition 2.2). Then for every v € D there are
indices i,j,« such the family of horospheres of the form hy'(s),s € R, is
mapped 1sometrically to the family hj;l(s),s € R (see [L2] Lemma 3.2).
These identifications correspond to the incidence relations described above in
the construction of the simplicial complex I'\|7|. (To see this one has to
use the fact that the Siegel set at infinity 0u(g;S) is canonically isomorphic
to AN = [e]i, e ,eé].) The main technical step is then to renormalize the
Busemann functions as A, = hiq —s;; (for certain constants s;;) in such a way
that each v € D maps a horosphere of some given level, say {f, = s}, to
another one, {h;, = s}, of the same level s (see [L2] Lemma 3.4). This fact
finally allows us to truncate the constituents ¢;S of the fundamental set 2 by
removing the open horoballs Bi,(s) := {hi, < —74s} (for certain constants
To and for s > 0 sufficiently large). The above construction guarantees
that the truncated fundamental set Q(s) := Ulm:1 q;S(s) of Q is relatively
compact in X and invariant under the (restricted) action of I'. Moreover
for s sufficiently large the I'-invariant “core” X(s) := I'"-Q(s) can be written
as the complement in X of a union of (countably many) open horoballs:
Xs)=X-T-UL, Uaea Bia(s) (see [L3] Theorem 3.6). These horoballs are
disjoint if and only if T" is an arithmetic subgroup of a (Q-rank 1 group. The
projection 7 : X — V maps X(s) to a compact submanifold with corners
V(s) of V whose fundamental group is isomorphic to I'. The “centers” of the
projected horoballs in 0.,V are in bijection with the vertices of I"\|7|. The
exhaustion function % is eventually defined in such a way that its level sets
coincide with the boundaries 0V(s). We summarize the result in the following
proposition (see [L2] Theorem 4.2).

PROPOSITION 2.2. Let X be a Riemannian symmetric space of noncompact
type and R-rank > 2 and let 1" be an irreducible, torsion-free, non-
uniform lattice in the group of isometries of X. On the locally symmetric
space 'V = I'\X there exists a piecewise real analytic exhaustion function
h:V — [0,00) such that, for each s > 0, the sublevel set V(s):=1h < s}
is a Riemannian polyhedron in V. Moreover the level sets {h = s} = 9V(s)
consist of projections of pieces of horospheres in X.
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Each polyhedron V(s) is homotopically equivalent to V. More precisely
we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric
space V is homeomorphic to the interior of the polyhedron V(s) in V, and
V(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above
exhaustion and then take the limit for s — oco. To that end we need estimates
for the second fundamental forms and the volumes of the (lower dimensional)
boundary polyhedra.

For each Siegel set S; := ¢;S which is part of the fundamental set Q we
have its truncated part '

Si(s) =8 — | (Bial®) N ) -
aEA
The top dimensional boundary faces of Si(s) in &; (resp. of Q(s) in Q)
are subsets of horospheres :

Hia(s) == {75 'hia = =5} N Si(s) , a€A.

The “horospherical” pieces H;,(s) together with their I -translates form the
boundary of the manifold with corners X(s) in X. For any nonempty subset ©
of A we set
Hio(s) := ) Hials) C Si(s).
acl

The various boundary subpolyhedra of V(s) are then unions of projections of
the pieces H;o(s) under the canonical projection 7 : X — V. More precisely,
as explained in Section 2, for any subset ® C A, we have the equivalence
relation on the set [ = {1,... ,m}

j~el if and only if T'q;Pe = I'q,Pe

(the g; are as in Proposition 2.1). This relation ~g induces a par-
tition, [(©), of the set I whose components will be denoted by E. Let
n = dimX = dimV, let k be the cardinality of © and let E ¢ I(0).
Then Vg_k(s) = W(U,EE Hi@(s)) is a (n — k)-dimensional boundary poly-
hedron of V(s); and moreover, any boundary polyhedron arises in this way
(see [L3] §4).
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REMARK. The minimal possible dimension which occurs is n — g where
g is the QQ-rank of G. It is also interesting to note (though not needed below)
that the outer angles are isomorphic to (J-Weyl chambers and their walls at
infinity.

We shall use the following well-known fact about Jacobi fields in symmetric
spaces (see [K] Theorem 2.2.9). A Jacobi field along a geodesic ray is called
stable if its length is bounded.

LEMMA 3.1. Let r : [0,00) — X be a unit-speed geodesic ray in the
symmetric space X (of noncompact type). Set p = r(0). Then the unique
stable Jacobi field J,(s) along r(s) with J,(0) =u € T,X can be written as

Ju(s) =) e aEs)
J
where {Ei(s)} is an orthonormal frame of parallel fields along r, the \; are
non-negative (uniform) constants and u = Zj a;,E;(0).

LEMMA 3.2. Let s > 0. The second fundamental forms of every boundary
polyhedron Vg‘k(s) with respect to outer angles in V(s) are uniformly bounded
by a constant independent of E, k and s.

Proof. Since the claim is local we can work in the universal covering
space X. As we noted above the preimage of Vg_k(s) in X under the projec-
tion 7 is the union of a finite number of horospherical sets

Hio(s) = () Hial®) C ({75 hia = —s},
acl aEcl

where © is a subset of A with k elements. The (inner) unit normal field of
the horosphere {77 'h;, = —s} is given by Z;, := —grad h;, (see e.g. [HI]
Proposition 3.1). Using d7 any element in the outer angle O(7w(p)) of Vg—k(s)
at a point m(p) € Vg'k(s) can then be identified with a positive linear
combination (of norm 1) of the radial fields Z;,(p), « € ©O. It therefore
suffices to show that for any pair (i,«) the second fundamental form of
Vg_k(s) relative to dnZ,, is uniformly bounded. We fix i and o and write Z
for Z,. For p € X let (., .), denote the Riemannian metric of X at p.
Let u,v € T,X be such that dm(u),dn(v) € Tw(p)Vg“k(s). Using the above
identifications the second fundamental form of Vg_k(s) C V(s) with respect
to Z can be written as

z(u,v) (p) = <DuZ> U>p .
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According to [HI], Proposition 3.1, we have D,Z(p) = J,(0) where J,
is the stable Jacobi field along the (unique) geodesic ray, say r, in X
which joins p to ci(c0) € 05X and with initial value J,(0) = u.
By Lemma 3.1 there are orthonormal parallel fields Ej(s) along r and
constants \; > 0 such that J,(s) = ZJ. e N aE(s) with u = Zj a;E;(0).
Consequently we get J;(0) = — > Aja;E;(0) and finally, for v = i biE0),

Mz, )P)| = [ = 35, Mgy | < ulllloll. O

We next estimate the volumes of the boundary polyhedra. Recall from
Section 2.1 the parametrization of X by horocyclic coordinates

p: Y =UXZXA+— X ; (u,T(m),a) — UMma - X .

Let dx? be the G-invariant Riemannian metric on X induced by the Cartan-
Killing form of the Lie algebra g of G and let dz?> be the invariant metric
on Z. Further let da® (resp. du®) be the left-invariant metric on A (resp. U).
Finally set dy? := pu*dx?.

LEMMA 3.3. Let dvy, dvy, dvz and dvs denote the volume elements of
the metrics dy*, du®, dz* and da®. Then at the point (u,z,a) € Y we have

2¢dvy = p(a)”'dvuy A dvy A dus

where e = %dimU and p is the sum of all positive roots (counted with
multiplicity); it can be written in the form p = Za@ Ca®, Cqo > 0.

For the proof see [B2] Corollary 4.4.

LEMMA 3.4. For the (n — k)-dimensional volume of each boundary
polyhedron Vg”k(s) of V(s) one has the estimate

Vol(Vg_k(s)) < sqkeg=es

?

where q = dimA is the Q-rank of G and ¢ > 0 is a constant ( independent
of E;k and s).

Proof.  We again consider the preimage of V,’}_k(s) in X under the map .
We need to estimate the volume of each horospherical piece

Hio(s) = ({2 ' hia = —s} N Ss), i€E.
«€EB

It clearly suffices to carry out the estimates for i — l; note that g, = e.
For the horocyclic coordinate map 4 : ¥ — X and the canonical projection
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7 Y — A we set Ag(s) := maop ! (ng(s)) C A. The set Ag(s) is contained
in an “affine” subspace of A of the form a;a.(s)A9* where aja.(s) € A and
A%7% is a q — k-dimensional subgroup of A (see Sections 3 and 4 of [L2)).
We denote the restriction of duy to AY™% by dwvye-r; for k = g we have
A% = ¢ and we set dvs = 1. By Lemma 3.3 we have (for k equal to the
number of elements of @)

Vol (ViE*(s)) < / p(a) L dvy A dug A dvge-x .
p (Hie(s)

Since the horospherical piece H;g(s) is part of a Siegel set S, , with w

relatively compact (and hence of finite volume) in UM we get

/ | p(a)‘ldvy A dvz N dvge—r <
w (Hels)

~ / dvU/\de/ p(a)"ldqu_k </ p(a)”ldqu_k.
w Ap(s) Ao(s)

Also by definition of a Siegel set we have afa) > 7 > 1 for all a € A.
Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in
[L2] show that for all « € ® one has a(ala*(s)) — ele® with p, > 0.
Hence, as © C A is not empty and since p = ) ., cqe(cq > 0), there is a
uniform constant ¢ > 0 such that p(a)~! < e= for all a € Ag(s). As noted
above the set Ag(s) is contained in a (g — k)-dimensional affine cone in A.
It is similar (in the sense of Euclidean geometry) to Ag(0) with similarity
factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get
| Ao (s) Was—r = s9=% and the Lemma follows. [

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet
theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact
type and R-rank > 2 and let 1" be an irreducible, torsion-free (non-uniform)
lattice in the group of isometries of X. Then for the locally symmetric space
V =T\X the Gauss-Bonnet formula holds :

x(V) = / Ydv.
14
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Proof. By Proposition 2.2 there is an exhaustion V = Uszo V(s) of V
by Riemannian polyhedra V(s). Each polyhedron V(s) in this exhaustion 18
equipped with the Riemannian metric induced by the one of V. Proposition 1.1
applied to V(s) yields

'(~1)"‘x’ (V(9) — / ¥ dv

V(s)

q
< / |WE || dwk—1 dve(p)
;;L%m

where g = dimA is the Q-rank of G (see Section 2.1) and where the index E
runs through a finite set. As we remarked in Section 1 the function ¥ 1s
locally computable from the components of the metric and the curvature tensor
of V(s) and from the components of the second fundamental form of Vg_k(s)
in V(s). The fact that V is locally symmetric together with Lemma 3.2 thus
implies that |Wg || < 1 for all E, k. Using Lemma 3.4 we conclude that

<Y Vol(ViR(s) < ey 5T
k,E

q
k=1

’(-1)”X’(V(s)) — / Ydv
V(s)

By Proposition 2.3 we have y’ (V(s)) = x(V). The polyhedra V(s) exhaust V

and (V) is an integer; hence (—1)"x(V) = fV(s) Y dv for sufficiently large s.

Finally, for n odd ¥ = 0 by definition (see [AW]) and the claimed formula

follows. [
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