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homology class in F, up to sign. It follows, therefore, from the classification
of surfaces, that each X, has Euler characteristic < —1. Therefore, when
n>1and n=g,

X(F) = x(F)=2=2n=) x(Xp) < (card S —n+1)(~1)

or equivalently card § < 3n — 3, as required.

It remains to consider the case when g > n > 1. In this case, we first
proceed as before, cutting open along the A;, obtaining a connected surface
F of genus g —n and with 2n boundary curves, containing the m curves G,
each of which is homologous to a sum of boundary curves in F. Now each
of the C; separates F, and we may further cut open along the C;, obtaining
a surface with m 4+ 1 components and total genus g —n. It follows that there
are additional pairwise disjoint simple closed curves E;, k=1,...,9—n, In
F, reducing F to a planar surface of genus O when we cut open along the
E; and cap off the resulting 2(g — n) boundary curves with disks. Call this
latter surface F, topologically a 2-sphere with 2n holes. Now the C; separate
F into m+ 1 = card S —n+ 1 planar components X,. As before, each X,
has Euler characteristic < —1. Therefore, again,

Y(F)=2-2n= ZX(Xg) < (card S —n+ 1)(=1)

or equivalently card S < 3n — 3, as required.

3. SUFFICIENCY FOR A SINGLE HOMOLOGY CLASS

Here we collect some basic information about the embedding of a single
simple closed curve in a surface, and offer an alternative, elementary proof
of Theorem 2 for the well-known case of a single homology class.

LEMMA 3.1. A nonzero homology class o € H(F) is primitive if and
only if there exists v € H\(F) such that v-o = 1.

Proof. A nonzero element of a finitely generated free abelian group 1s
primitive if and only if it is part of a basis if and only if there is a Z-valued
homomorphism that takes the value 1 on it. Recall that taking intersection
numbers of 1-cycles defines a skew symmetric bilinear form on H(F). The
content of Poincaré Duality in this situation is that this bilinear form is
nonsingular, that is, the adjoint homomorphism H,(F) — Hom (H1 (F),Z) 1S
an isomorphism. The lemma then follows.
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LEMMA 3.2. Any homology class o € H{(F) can be represented by an
immersed, oriented closed curve on F and also by an embedded, oriented
1 -submanifold.

Proof. The Hurewicz homomorphism 7(F) — H;(F) is onto. Compare
W. Massey [1980], Chapter III, Section 7, for example. Any map S I' 5 F can
be approximated by an immersion, with only isolated double points. One can
surger any double points, that is, one can replace any pair of small oriented
arcs having a single transverse intersection with a pair of parallel oriented
arcs with the same end points and lying within a regular neighborhood of the
intersecting arcs. In this way one creates a disjoint union of oriented simple
closed curves representing the same homology class.

PROPOSITION 3.3. A homology class « in H,(F) can be represented by
a simple closed curve on F if and only if « is primitive.

Proof. We sketch a 2-dimensional version of the argument of Bennequin
[1977]. If a simple closed curve represents a nonzero homology class, then
it is nonseparating. It follows that there is a simple closed curve that meets
it transversely in a single point. This implies indivisibility, by the homology
invariance of intersection numbers.

For the converse, we may assume that « is nonzero. We begin by
representing « by a disjoint union A of oriented simple closed curves, as in
Lemma 3.2. We shall assume that A contains the smallest possible number
of components and show that this number can be reduced unless it is 1 or it
is equal to the divisibility of «.

Cut open F along A-that is, remove the interior of a small tubular
neighborhood of A. The boundary of the cut open surface F consists of two
copies A;” and A; of each component A; of A, each of which we orient
as the boundary of the orientable surface F. The positive components A:
have the same orientation as A;, while the negative components A;” have the
opposite orientation.

If some component R of F contains in its boundary two positive curves
A and A;L (or two negative curves), then they can be banded together in an
orientable way using a band in R. That is, one chooses an embedded arc ¢
in R meeting A;" and AJ-Jr in its two end points only. One then replaces A;
and A; with the single simple closed curve obtained by removing small arcs
in A; and A; containing the end points of 4 and inserting in their place two
embedded arcs parallel to 6. This would reduce the number of components -
of A. If some component R has boundary just A" and A; for some A;,
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then we can conclude that A is connected and we are done. If some R has
more than two boundary components, then it contains two positive curves or
two negative curves, and we can proceed as above to reduce the number of
components of A. R

It remains to consider the case where each component R, of F has exactly
two boundary components of the form A" and A;", where A; and A; are
distinct components of A. In this case we conclude that we can arrange the
components of A in a sequence Aj,A,,...,A,, so that A; is homologous to
A,, A, is homologous to As,...,A, is homologous to A;. In this case, then,
the number n of components is exactly the divisibility of «.

4. SUFFICIENCY FOR INDEPENDENT HOMOLOGY CLASSES

In this section we complete the proof of Theorem 2, dealing with the case
of a set of homology classes consisting of independent elements.

LEMMA 4.1. Let F be a closed orientable surface and let ay,...,a,
€ H\(F) be independent homology classes that span a summand of Hi(F)
on which the intersection pairing of F vanishes. Then there exists v € Hy(F)
such that v-a, =1 and v-o; =0 for i < n.

Proof. This is a consequence of Poincaré Duality.

PROPOSITION 4.2. Let F be a closed orientable surface and let o, . . ., o
€ H|(F) be independent homology classes that span a summand of H,(F)
on which the intersection pairing of F vanishes. Then there exist pairwise

disjoint simple closed curves Ay,...,A, in F representing the homology
classes «q, ..., .

Proof. The proof will proceed by induction on n. The case n = 1 is
given by Proposition 3.3.

Now inductively consider the case of n > 1 homology classes. By
Proposition 3.3 we can find a simple closed curve A, in F representing
;. We claim that there is a simple closed curve B, in F representing a
homology class (, such that B, meets A, in exactly one point and such that
[B,]-co; =0 for i <n. By Lemma 4.1 there is a homology class v, € H;(F)
such that «; -7, = 6;,,. We begin by representing vy, by a simple closed curve
B transverse to A,. By tubing together neighboring pairs of intersection of
B with A, of opposite sign we can transform B into a disjoint union B’
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