Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 42 (1996)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: UNIFORM DISTRIBUTION ON DIVISORS AND BEHREND
SEQUENCES

Autor: Tenenbaum, Gérald

Kapitel: 3. Functions of excessive growth: the case $f(d) = dMalpha$

DOI: https://doi.org/10.5169/seals-87875

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-87875
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

174 G. TENENBAUM

We choose T = ¢(x)?* = (logx/¢p(x))*’*. The upper bound above
becomes

(56) < @(x)?"2 (logx)»"2~ 1 (log 91 (x))? .

Indeed the last term is easily seen to be negligible by the lower bound (40)
imposed on @(x), and because R(x) = exp{(logx)*7} is an admissible
choice for R. Thus we may define E,(x,y) as being equal to a suitable
constant multiple of the right-hand side of (56), and apply Theorem 7 to
obtain that

(57) An; f) <&Em)t(n)y*™?2 )/ Ey(n,y) ppl,

provided 0 <y <yo<4 and y = y(n) is such that E,(n,y) is slowly
increasing as a function of n. We choose

lo n lo n
y:2/1+ gcp()zl/l_ gei(n))
log, n 2log, n
which minimises (logn) !¢V E,(n,y) up to a power of log,®;(n). This
value of y is always in the range [1, 2]. Inserting into (56) yields

E,(n,y) = (log ¢,(n))?,

which implies that this function is slowly decreasing. The required estimate (42)
hence follows from (57). This completes the proof of Theorem 10.

3. FUNCTIONS OF EXCESSIVE GROWTH: THE CASE f(d) = d*

Here, we address the problem of bounding the discrepancy pp!/ for
functions which increase too fast for the techniques of the previous section to
be applicable. More precisely, let us recall the quantity

1
k1+0

4

b2

w2\ o2\ e(vftkm)) |
8) H,(x,y):= ~ —=2 ==
(58) (x, ) ,Z‘l (4) ) ( )

m1+0

m=1

with o := 1/logx, which appears implicitly in the upper bound (26) of
Theorem 7 for the discrepancy A(#z; f). This was primarily defined for
y < 8, but we restrict if here to values of y < 4. The functions of moderate
growth are essentially those for which the inner m-sum can be estimated by
partial summation, using the available results on the mean value of
m= (y/4)¢m . When the rate of growth of f prohibits such a treatment,
we may consider H,(x,y) as a ‘type II sum’, according to the poetic
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terminology of Vinogradov. For all intents and purposes, this means
making the trivial estimate | (y/4)2® | < 1, expanding the square and, after
permuting summations, estimating the inner k-sum by an ad hoc exponential
sum method.

This programme may be carried out, in principle, for any smooth
function f of, say, at most polynomial growth, and indeed one could even
aim at a general theorem established along these lines and providing,
under suitable sufficient conditions, explicit upper bounds for the discrepancy.
Due to the considerable amount of calculations that this would involve,
we have preferred to treat only examples which reflect all the difficulties of
the general case, but avoid tedious technicalities that would hide the main
stream of the argument. In this context, we believe that the functions

d—d® (o e R"\Z"), dr 6d (0 €e R\Q)

are of special interest. We treat the first of these immediately and the second
one in the next section. The following theorem provides an effective version

of the corresponding qualitative result obtained by Hall & Tenenbaum
in [13].

THEOREM 11. Let o > 0 be a given real number, not an integer. Then
the function g.(d):=d* is erd. More precisely, we have

(59) A(n; g,) < t(n)(logn)-® ppl

12
T

forall 8§ < §y:= % log

We note that §, > % We have not attempted here to find the best
exponent available from latest developments in exponential sums theory and
have confined ourselves to using a result of Karatsuba [16] on Vinogradov-type
bounds which is expressed in an easily applicable form. We remark that
van der Corput-type estimates would in general yield weaker bounds for the
discrepancy and would actually only save a power‘of log, n in (59).

It is also worthwhile to note at this stage that the method of proof of
Theorem 11 will readily yield that the function

f(d) = exp{(logd)*}

is erd for 0 < a < 1, and indeed it will provide a bound comparable
with (59) for the discrepancy. In particular, this shows that the limitation
o < 3/5 which arises from mere application of Theorems 4 or 10 is
purely technical. The range 1 < a < 3/2 may also be handled by the
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same technique, but with a weaker effective result — see Theorem 2 of
Karatsuba [16].

By Theorem 3, we immediately derive from the above result the following
corollary.

COROLLARY 5. Let «,8 be as in the statement of Theorem 11. Then
the sequence

(60) {n>2:<(n*) < (logn)~3}
is a Behrend sequence.

Of course we can rewrite the condition in (60) introducing j:= [n?%].
This yields the following reformulation in terms of block sequences.

1

COROLLARY 6. Let PB>0,1/B¢Z,5<8,=;logs:. Then the
sequence
(61) %@y:lJ]jﬂﬁ(1+f—fJ]mz+
j=2 J(logj)?

is a Behrend sequence.

As far as block sequences are concerned, this is only significant when
B > 1: otherwise the ‘blocks’ have lengths smaller than 1 and looking at
% (0) as a block sequence is meaningless. As we remarked in the previous
section, the above result is unreachable, in the present state of knowledge,
by the technique applied in [24]. The natural conjecture in accord with the
results of [15] and [24] would be that % (6) is Behrend for all § < log 2,
this exponent then being optimal. This is also out of reach of the present
technique, which implies a systematic loss due, among other causes, to the
trivial estimate for (y/4)¢%) in (58).

We now embark on the proof of Theorem 11. We give ourselves two
parameters X, X, satisfying

eV < x < x,  xpi= xloear,

and introduce the following further notation

Jo T = 08D i 0<i< ),
log 2
Bi(m,n;v,f):= L e(vftkn)—vftkm)) (0<j<J).

Kj<k<Kj+]
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LEMMA 1. Let o > 0. Then we have uniformly for x>=3,v =1,
0 <y <4, and a real valued arithmetical function f

H,(x,y) < (logx)*?(logx;)»*
Ly Py e

x1<m<n<x; mn 0/ J Kj
nd —ma>1

(62)

Proof. To lighten the presentation, we temporarily set z:= y/4. We
first split the A-sum in (58) according to whether £k < x;, x; < k < x5 or
k > x,, so as to write correspondingly

H,(x,») = HP(x,») + HP(x,») + HD (x, ) .

Using the bounds

(63) Y z9Wk-1 < (logx,)*?,

and s

(64) Z ZQ(k)k*l—chz—o/Z Z ZQ(k)kAI_G/2<(IOgX)Z_1/2,
k>,\.’2 k>1

we readily obtain

HE/I)(XQ y) + HE,?’)(-X, y) < (log xl)z(logx)ZZ + (10gx)32—1/2
< (log x)»"2(log x1) 74 .

(65)

Next, we split the inner m-sum in H'?(x,y) at x; and x, and use the
inequality (a + b + ¢)? < 3(a? + b2 + ¢2?) to obtain

HY (x,y) K3H (x,3) + 3H® (x,y) + 3H®P (x, »)

with

2
Hiz”(x,y) < Z ZQ(k)k—l( Z ZQ(m)m—l)

(66) X <k<xs 0 %€ iy
< (logx)*(logx;)% < (leg x)?2(log x,)”/* ,
by (63), and
H® (x,y) < D 7 Q) fe -1 ( y ZQ(m)m—l—c)z
(67) x;<k<xp m>x,
< (logx)*~! = (log x)¥/4-! < (log x) /2,
by (64).
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It remains to estimate H *?(x, y). We have

Q(m) 2

e(vfkm)) | ,

68 HPx, < Y K'Y )

0<j<J Kj<k<K X <m<x, Mm'*O

Jj+1

where we have made the trivial estimate z9® < 1. Expanding the square,
we find that it does not exceed

ZQ(mn) l
69) 2%Re Y, ——— e(vflkn)—vf(km))+2 D — .
m<n<x, (mn)l+c xj<m<n<x, MA
nt—m¢>1 nt —mae <1
We claim that the second sum on the right is < x; ™! ®, This plainly

holds if o > 1 since the summation conditions then imply that m = n.
When 0 < a < 1, we note that n* — m® > a(n — m)n*—1, so for fixed n
the m-sum is < n!'-%/n = n~-* and the conclusion is still valid. Inserting
this estimate into (69) and (68) and using the fact that J < x™ (%,
we obtain

H (x, )
1 z Q(mn)

<fe ¥ L~ ¥ Y T e(ufkmy—v/(km)+ 1.
0<j<J Kj Ki<k<Kjiy x;<m<n<x, (l?’li’l)lﬂLG
nt —mo>1

We permute summations on k and m,n and see that the new, inner
k-sum equals B;(m, n;v, f). Together with (65), (66) and (67), this com-
pletes the proof of our lemma.

We now apply Karatsuba’s estimate to bound the exponential sum
(70) B(K;v):= ), e(vk®)
K< k<2K

for relevant values of v, K.

LEMMA 2. Let o e€ R*\Z*. There exists a constant ¢ = c(a) >0

such that the estimate
log K)3
(71) B(K;v) < K'=-¢ 4+ Kexp —c—(g—)——
(1 + logv)?

holds uniformly for K> 1,0 > 1.

Proof. If v < K'~% and so 0 < a < 1, we apply a classical estimate
of van der Corput (see e.g. Titchmarsh [26], lemma 4.7) to get

2K
B(K;v) = 5 e(vt*)dt + O(1) < K'-2 .

K
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(The same estimate also follows from theorem 2.1 of Graham & Kolesnik [7].)

Thus (71) holds in this case.
Ifv>K!-, set n:= [30 + 3(logv)/log K], so that n > 3 and

Kn/3 < UKOL < K(n+1)/3 .

Put g(2):= vt*. We have for all non-negative integers s

g® (1) _, (a) jaos

s! S

Writing (?) = (— 1)5H1<j<3{1 — (o + 1)/j}, we see that we have for
suitable positive constants ¢; = c;(a), ¢, = c2(a),

(72) cis— 1 g ‘ (oc) \ Lcs b (s20).

S

Hence for large K and K <t < 2K we have
(n+1) t 2(1

g (1) < C2
(n+ 1! (n+ 1)o+!

UKa—n—l < ZGCZK—Z(n—l—l)/S < K—(n+1)/2 .

Similarly, a straightforward computation enables us to deduce from (72)
that for all s in the range 3n/4 < s < n (so s > 3) and large K we have

g (1)
s!

K«3s/4 g Cls—a—12—5K~2/3 < \ < 2aK—55/9+1/3 <K—s/3 .

By Theorem 1 of Karatsuba [16], it follows that, for suitable positive
absolute constants ¢; and ¢, and K > Ky(a) we have

| B(K;v)| < csK!-caln?
This implies the required bound.

We are now in a position to complete the proof of Theorem 11. We want
to apply Theorem 7 and use Lemmas 1 and 2 to obtain an upper bound for
the quantity E,(n, y). We select, in Lemma 1, f = g,, as defined in the
statement of the theorem, and

x; = exp{c(logx)?3log, x},

with ¢ = ¢(a) > 0 at our disposal. Then, with the notation of Lemma 2,
we have B;(m,n;v,g,) = B(K;;v) where v:=v(n®—m®), so v < x."¢
provided v < x. By Lemma 2 there is a positive constant ¢s = c¢s(a) such
that, for all m, n < x with n* — m* > 1

’
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(logK;)?

B;(m,n;v,g,)/K; <exp { —cs
(log x,)?

} < 1/(ogx)*

provided c(a) is large enough. By (62), we infer that we have uniformly
for 1 <v<x 0<y<4,

(73) H,(x,y) < (logx)*"(log, x)»'* .

Inserting the above estimate into (24) with, say, 7T := logx, we see that
we may choose

(74) E>(x,y) = (log x)'"/12~ I (log, x)* +774
which is hence slowly increasing. Therefore we get by Theorem 7 that
(75) A(n, ga) < T(n) (].Og n)]]y/24—1/2—(1/2)10gy+0(1) ppl .

The required estimate (59) now follows on taking optimally y = %
4. FUNCTIONS OF EXCESSIVE GROWTH: THE CASE f(d) = 6d

We now investigate, in a quantitative form, the uniform distribution on
divisors of the function

ho(d):= 08d

when 0 is a given irrational real number. This study is similar in principle
to that of the previous section, but more complicated inasmuch as the effective
bounds for A(#n; hg) will depend on the arithmetic nature of 6. On the other
hand we shall not need, as might be expected, any involved tool for the
estimation of the relevant exponential sums.

More explicitly, let us define Q(x) := x/(logx)'%, and

(76) q(x;0):=1inf{g:1 < g < Qx), || g0 <1/Q(x)}

where || u || denotes the distance of u to the set of integers. Our results depend
on a free parameter y,0 < y < 4, and may be expressed conveniently in
terms of any increasing lower bound for g(x;90), say g*(x;y,0), with the
property that g*(x;y, 6)/(logx)?/* is decreasing. A possible choice is

" y(og )it
 tinf, >, q(u; 9)

(77) a* (x5 3, 0) : = 4(log )"/ §

Unless 0 has abnormally good rational approximations, we have

(78) g*(x;»,0) = (logx)»'+.
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