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COMMISSION INTERNATIONALE
DE IENSEIGNEMENT MATHEMATIQUE

(THE INTERNATIONAL COMMISSION
ON MATHEMATICAL INSTRUCTION)

UNDERSTANDING THE PROCESSES
OF ADVANCED MATHEMATICAL THINKING')

An invited ICMI lecture at the International Congress of Mathematicians
(Zurich, August 1994)

by David TALL

INTRODUCTION

In preparing successive generations of mathematicians to think in a creative
mathematical way, it is difficult to convey the personal thought processes which
mathematicians use themselves. So many students, unable to cope with the
complexity, resort to rote-learning to pass examinations. In this paper I shall
consider the growth of mathematical knowledge and the problems faced by
students at university. If they are given opportunities to develop mathematical
thinking processes, albeit with initially easier mathematics, they may develop
attitudes to mathematics more in line with those preferred by mathematicians
while standard mathematics lectures designed to ‘“get through the material”
may force them into the very kind of rote-learning that mathematicians abhor.

THE DEVELOPMENT OF MATHEMATICAL THINKING

Mathematicians struggle with ideas in research, but the ideas taught to
undergraduates have been organised in a clear and logical sequence. Why is
it that, when presented with these well-organised theories, students struggle
too ? Is it just students’ lack of effort or intellect, or are there other reasons ?

' 'Y The agthor wishes to thank Yudariah Binte Mohammad Yusof for her research used in
this presentation and Tommy Dreyfus, Eddie Gray & Anna Sfard for helpful suggestions.
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AXioMm I. All mathematicians are born at age 0.

AXIOM II. To reach the age M of mathematical maturity, the mathemati-
cian must pass through ages 0,1,2,...,M—1.

THEOREM. A cognitive development is necessary to become a mathe-
matician.

Proof. Since no child aged 0 has produced any important mathematical
theorem, something happens between ages 0 and M that makes mathematical
thinking possible. [

This “proof” which caricatures a mathematical style is perhaps amusing
but certainly mathematically flawed. The non-existence of a known counter-
example 1is clearly insufficient to prove something. But if we think in
mathematical terms about how humans think, our arguments are also liable
to fail. This happened, for example, in the set-theoretic approach to school
mathematics in the sixties when the apparently obvious route of introducing
modern mathematics into schools failed to produce the understanding that
was expected. It is therefore clear that we must take the nature of cognitive
growth much more seriously if we are to understand the development of
mathematical thinking. I propose to do this by hypothesising fundamental
cognitive principles and considering the consequences.

COGNITIVE PRINCIPLE 1. For survival in a Darwinian sense, the individual
must maximise the use of his/her cognitive structure by focusing on concepts
and methods that work, discarding earlier intermediate stages that no longer
have value.

COROLLARY. The individual is likely to forget much of the learning passed
through in years 0,1,...,M — 1 and the mathematician is likely to attempt
to teach current methods that work for Aim/her, not methods that will work
for the student.

One finally masters an activity so perfectly that the question of how
and why students don’t understand them 1s not asked anymore, cannot
be asked anymore and is not even understood anymore as a meaningful
and relevant question. (Freudenthal, 1983, p. 469)

After mastering mathematical concepts, even after great effort, it
becomes very hard to put oneself back into the frame of mind of
someone to whom they are mysterious. (Thurston, 1994, p. 947)
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This is not something that should cause embarassment to mathematicians,
for it is sensible for a professional to do everything to climb to the summit of
his or her profession. But it does suggest that there is need for professionals
of a possibly different kind to devote attention to the cognitive growth of
mathematical thinking to help the next generation to scale similar heights.

To understand cognitive growth it is useful to consider a second principle,
which may seem initially to have little to do with mathematics, but proves in
practice to have everything to do with its underlying power of mathematical
thinking :

COGNITIVE PRINCIPLE II. The brain has a small focus of attention and a
huge space for storage and therefore cognitive growth needs to develop:

(a) a mechanism for compression of ideas to fit in the focus of attention.

(b) a mechanism for linking with relevant stored information and bringing it
to the focus of attention in an appropriate sequence.

Mathematics is amazingly compressible : you may struggle a long
time, step by step, to work through some process or idea from several
approaches. But once you really understand it and have the mental
perspective to see it as a whole, there is often a tremendous mental
compression. You can file it away, recall it quickly and completely
when you need it, and use it as just one step in some other mental
process. The insight that goes with this compression is one of the real
joys of mathematics. (Thurston, 1990, p. 847)

But how do we help growing mathematicians to achieve these levels of
compression ? Simply telling them the theory proves sadly to be insufficient :
...in their university lectures they had been given formal lectures

that had not conveyed any intuitive meaning; they had passed their
examinations by last-minute revision and by rote.

(W. W. Sawyer 1987, p. 61)

To help students become mathematicians I hypothesise we need to provide
them with an environment in which they can construct their own knowledge
from experience and learn to think mathematically :

COGNITIVE PRINCIPLE III. A powerful agent in learning with understanding
is by going through mathematical constructions for oneself and then reflecting
on one’s own knowledge — thinking about thinking.

We believe that people learn best by doing and thinking about
what they do. The abstract and the formal should be firmly based on

experience. (Dubinsky & Leron, 1994, p. xiv)
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This principle will help students to become autonomous thinkers, and
to become responsible for their own learning. Dubinsky & Leron use the
programming language ISETL (Interactive SET Language) to get the students
to engage in programming mathematical constructs in group theory and ring
theory. Because the programming language is close to mathematical notation,
it enables the students to construct abstract concepts like cosets and Lagrange’s
theorem in a concrete manner, showing considerable success in what is
traditionally a difficult area.

A possible difference between this learning and the thinking of for-
mal mathematicians is intimated by Thurston (1994, p. 167) who suggests
that

...as new batches of mathematicians learn about the subject they
tend to interpret what they read and hear more literally, so that the

more easily recorded and communicated formalism and machinery tend
to gradually take over from other modes of thinking.

Reflective thinking on these matters is an indispensible part of research
mathematics. But it is rarely taught to undergraduates, where the focus is on
content of lecture courses. At the school level problem-solving is a central part
of the NCTM standards in the USA, and mathematical investigations are part
of the British mathematics curriculum. Perhaps now is the time to introduce
the study of mathematical thinking itself into university courses.

Of the three cognitive principles mentioned, the first essentially warns that
those who have reached a greater level of maturity may have forgotten how
they learnt. We therefore consider the other two principles in detail, first the
nature of mathematical compression, and then move on to the process of how
to teach reflective mathematical thinking.

THE COMPRESSION OF KNOWLEDGE IN MATHEMATICS

There are various methods of compression of knowledge in mathematics,
including :

(1) representing information visually (a picture is worth a thousand words),
(2) using symbols to represent information compactly,

(3) if a process is too long to fit in the focus of attention, practise can make
it routine so that it no longer requires much conscious thought.
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Method (1) is used by many (but not all) mathematicians. In his classic
study of how mathematicians do research, Hadamard explained that, with
certain exceptions :

... mathematicians born or resident in America, whom I asked,

... practically all... — contrary to what occasional inquiries had suggested

to Galton as to the man in the street — avoid not only the use of mental

words, but also, just as I do, the mental use of algebraic or any other
precise signs; also as in my case, they use vague images.

(Hadamard, 1945, 83-84)

Einstein reported that visual, kinetic and other imagery proved useful in
his research :

The psychical entities which seem to serve as elements in thought are
certain signs and more or less clear images which can be ‘“voluntarily”
reproduced and combined. ... The above mentioned elements are in my
case, of visual and some of muscular type. Conventional words or other
signs have to be sought for laboriously only in a secondary stage, when
the mentioned associative play is sufficiently established and can be
reproduced at will.

(Albert Einstein, in a letter to Hadamard, 1945, 142-3)

In recent interviews with research mathematicians, Sfard (1994) found
exactly the same phenomena. One mathematician reported to her:

“To understand a new concept I must create an appropriate
metaphor. A personification. Or a spatial metaphor. A metaphor of
structure. Only then I can answer questions, solve problems. I may
even be able then to perform some manipulations on the concept.
Only when I have the metaphor. Without the metaphor I just can’t
do it’

‘In the structure [which he created in his mind in the attempt to
understand], there are spatial elements. Many of them. It’s strange, but
the truth is that my student also has noticed it... a great many spatial
elements. And we are dealing here with the most abstract things one
can think about! Things that have nothing to do with geometry, [that
are] devoid of anything physical... The way we think is always by
means of something spatial... Like in ‘ This concept is above this one’
or ‘Let’s move along this axis or along the other one’. There are no
axes in the problem, and still...’ (Sfard, 1994)
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Mathematicians may use images in this way to relate ideas in their
highly developed cognitive structure. Such thought experiments are highly
advantageous in contemplating possible relationships before the question of
logical proof arises. But it is necessary, as Hadamard said, to be “guided by
images without being enslaved by them” (ibid, p. 88).

Students do not have such a developed cognitive structure and instead
they may be deceived by their imagery. They already have their own concept
images developed through previous experience (Tall & Vinner, 1981). Such
imagery is often in conflict with the formal theory (see Tall, 1991a, 1992
for surveys). Even though concepts are given formal definitions in university
mathematics, students may appeal to this imagery and infer theorems through
the use of their own thought experiments. For instance, “continuous” might
carry the inference of something “going on without a break™, so a continuous
function must clearly pass through all intermediate values, and must also be
bounded and attain its bounds. For a proof by thought experiment, just imagine
a picture and see.

VISUALISING MATHEMATICAL CONCEPTS

Although the private images of mathematicians may be difficult to com-
municate, public images, such as diagrams and graphs enable a great deal
of information to be embodied in a single figure. Software which allows
visual representations to be controlled by the user, to see dynamic rela-
tionships make even more powerful use of visualisation. Having been fas-
cinated by the non-standard idea that a differentiable function infinitely
magnified looks like a straight line (within infinitesimals), I wrote com-
puter programs to look at computer drawn graphs under high magnifi-
cation (figure 1). This allows a visual approach to the notion of differ-
entiability. By using fractals such as the Takagi function (Takagi, 1903)
— rechristened the “blancmange” function because of its similarity to
a wobbly English milk jelly — functions could be drawn which never
magnified to look straight (figure 2), hence intimating the notion of a
nowhere differentiable function. Indeed, a visual proof of this argument
is easy to give (Tall, 1982). By taking a small version of the blanc-
mange function bl(x), say w(x) = bI(1000x)/1000, for any differentiable
function f(x), consider the graph of f(x) + w(x). This looks the same on
the computer screen to a normal magnification, but under high magnification
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(say times 1000), wrinkles appear. This shows visually that, for every differ-
entiable function f(x) there is a non-differentiable function f(x) + w(x), so
there are at least as many non-differentiable functions as differentiable ones
(figure 3).

A problem with visualisation is that the human mind picks up implicit
properties of the imagery and the individual builds up a concept image that
incorporates these properties. Graph-plotters tend to draw graphs that consist
of continuous parts. So I designed a graph plotter to simulate functions that are
different on the rationals and irrationals (Tall 19915, 1993). (The routine uses
a continued fraction technique to compute a sequence of rationals approaching
a given number and, when a term of the sequence is within ¢ of the number,
it 18 said to be (e — N)-pseudo-irrational if the denominator of the fraction
exceeds N. By suitably fixing the size of ¢ and N, computer numbers can
be divided into two subsets, (pseudo)-rationals and (pseudo)-irrationals that
model various properties of rationals and irrationals.)

f(x)=x+sinx+(sin3x)72
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FIGURE 1
Magnifying a locally straight graph

This allows visual insight into more subtle notions. For instance, just as
differentiability can be handled visually by magnification maintaining the same
relative scales on the axes, continuity can be visualised by maintaining the
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f(x>=bl(x)
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FIGURE 2

Magnifying the nowhere differentiable blancmange

f(x)=sinx+bl1(1666x)>-10606006
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FIGURE 3
Magnifying an interesting graph
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vertical scale and stretching the horizontal scale to show less and less of the
graph within the same window. A continuous function is one such that any
picture of the graph will pull out flat. Figure 4 shows a picture of a graph of a
function f(x) which takes the value 1 if x is rational and x* if x is irrational.
By pulling it horizontal, it is visually continuous at x = 1 and x = —1, but
this clearly fails elsewhere.

2 ) 2
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FIGURE 4

Stretching a graph horizontally to “see” if it is continuous

Visual software has been developed in a wide variety of ways, such
as Kocak (1986), Hubbard and West (1990) for visualising the solution
of differential equations, and a growing mountain of software resources
presented each year at the annual Technology in College Mathematics Teaching
conferences. Such software can give students powerful gestalts to enable them
to imagine sophisticated mathematical ideas as simpler visual images. For
instance, suppose that a student knows that a differentiable function is locally
straight and that a first order differential equation such as dy/dx = —y simply
tells the gradient dy/dx of that graph through a point (x,y). Then it is visually
clear that a good approximation to the solution can be made by sticking together
short straight-line segments with the appropriate gradient. Drawing a picture
shows how good this approximation is and visually confirms the existence
of a solution, motivating theorems of existence and uniqueness of solutions
provided that the gradient is defined along the solution path. This can be
valuable both for students who will become mathematics majors and those
who will use mathematics in other subjects. I have found such techniques of
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enormous value teaching science students who have little time for the formal
niceties. It proves a good foundation for mathematics majors too, but one
must not underestimate the difficulties of linking the visual imagery — which
comes as a simultaneous whole — and the logical proofs which involve a
different kind of sequential thinking.

USING SYMBOLISM TO COMPRESS PROCESS INTO CONCEPT

Symbols such as Ax = ¢ for a system of linear equations express a
relationship in a far more compact form than any corresponding use of natural
language. But there is a common use of symbols in mathematics which
introduces compression in a subtle way rarely used in ordinary language. It
is a method of compression that mathematicians are aware of intuitively but
do not articulate in any formal sense, yet it becomes of vital importance
in cognitive development. Let me illustrate this with the concept of number
and the difference between a mathematician’s definition and the cognitive
development of the concept.

According to the set-theoretic view of Bourbaki, (cardinal) number concepts
are about equivalences between sets. But a set-theoretic approach to number
was tried in the “new math” of the sixties and it failed. Why ? Almost
certainly because the set-theoretic approach is a natural systematisation when
everything has been constructed and organised but it is less suitable as the
beginning of a cognitive development. In essence it is a formulation which is
likely to be suggested by experts who have forgotten their earlier development
(cognitive principle I) but it proves unsuitable as an approach for the growing
individual.

Even though small numbers of two or three objects can be recognised
in a glance, cardinal numbers for these and larger numbers begin cog-
nitively in young children as a process: the process of counting. Only
later do the number symbols become recognised as manipulable number
concepts.

It often happens that a mathematical process (such as counting) is
symbolised, then the symbol is treated as a mathematical concept and itself
manipulated as a mental object. Here are just a few examples :
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symbol process concept
3+2 addition sum
-3 subtract 3, 3 steps left negative 3
3/4 division fraction
3+ 2x evaluation expression
v=-s/t ratio rate
osite , . : : . :
SInA = _— trigonometric ratio trigonometric function
hypotenuse
y =f(x) assignment function
dy/dx differentiation derivative
[ fx)dx integration integral
. x> —4 )
lim
x—‘>2 x o . . . . ,
© & tending to limit value of limit
n?
n=1 /
o €S, permuting {1,2,...,n} element of S,
solve (f(x) =0,x) solving an equation solution of equation

Given the wide distribution of this phenomenon of symbols representing
both process and concept, it is useful to provide terminology to enable it to
be considered further.

COGNITIVE DEFINITION. An elementary procept is the amalgam of a
process, a related concept produced by that process and a symbol which
represents both the process and the concept.

COGNITIVE DEFINITION. A procept consists of a collection of elementary
procepts which have the same object (Gray & Tall, 1994).

CAVEAT. This is a cognitive notion, not a mathematical one. Anyone
with a mathematical background might be tempted to define an elementary
procept as an ordered triple (process, concept, symbol) and a procept as an
equivalence class of ordered triples having the same object. Such an approach
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18 of little cognitive value in that the purpose of the procept notion is to echo
the cognitive reality of how mathematical processes are compressed mentally
into manipulable mental objects. This has been the focus of attention of many
researchers in mathematics education both at school and university level,
including for example, Piaget (1972), Greeno (1983), Davis (1984), Dubinsky
(1991), Sfard (1991), Hare & Kaput (1991). The cognitive process by which
processes become conceived as manipulable objects is called encapsulation
by Dubinsky, following Piaget.

Had the definition of procept been a mathematical definition, doubtless
some mathematician would have made it before. But the procept notion implies
a cognitive ambiguity — the symbol can be thought of either as a process,
or as a concept. This gives a great flexibility in thinking — using the process
to do mathematics and get answers, or using the concept as a compressed
mental object to think about mathematics — in the sense of Thurston :

I remember as a child, in fifth grade, coming to the amazing (to
me) realization that the answer to 134 divided by 29 is '**/ (and so
forth). What a tremendous labor-saving device ! To me, ‘134 divided
by 29’ meant a certain tedious chore, while 13"”/ 29 was an object with
no implicit work. I went excitedly to my father to explain my major
discovery. He told me that of course this is so, a/b and a divided by

b are just synonyms. To him it was just a small variation in notation.
(Thurston, 1990, p. 847)

I claim that the reason why mathematicians haven’t made this definition
is that they think in such a flexible ambiguous way often without consciously
realising it, but their desire for final precision is such that they write in a
manner which attempts to use unambiguous definitions. This leads to the
modern set-theoretic basis of mathematics in which concepts are defined as
objects. It is a superb way to systematise mathematics but is cognitively in
conflict with developmental growth in which mathematical processes become
mathematical objects through the form of compression called encapsulation.

SEQUENTIAL AND PROCEDURAL COMPRESSION

A mathematician puts together a number of ideas in sequence to carry
out a computation or a sequence of deductions in a proof using method
(3). Hadamard performs such mental actions successively focusing on images
before arguments are formulated logically :

It could be supposed a priori that the links of the argument exist

in full consciousness, the corresponding images being thought of by
the subconscious. My personal introspection undoubtedly leads me to
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the contrary conclusion : my consciousness is focused on the successive
images, or more exactly, on the global image; the arguments themselves
wait, so to speak, in the antechamber to be introduced at the beginning
of the “precising” phase. (Hadamard, 1945, 80-81)

Students who have little of this internal structure see in a proof just
a sequence of steps which they feel forced to commit to memory for an
examination :

Maths courses, having a habit of losing every student by the end of
the first lecture, definitely create a certain amount of negative feeling
(as well as a considerable amount of apathy) and the aim for the exam
becomes the anti-goal of ‘aiming to get through so I don’t have to
retake’ rather than the goal of ‘working hard to do well because I
enjoy the subject’. (Female mathematics undergraduate, 2nd Year)

This use of memory for routinizing sequential procedures is a valuable
human tool when the mental objects to be manipulated will not all fit in the
focus of attention at the same time. The memory scratch-pad available is small
— about 7 4+ 2 items according to Miller (1956).

When individuals fail to perform the compression satisfactorily they do not
have mental objects which can be held simultaneously in memory (Linchevski
& Sfard, 1991). They are then forced into using method (3) as a defence
mechanism — remembering routine procedures and internalising them so
that they need less conscious memory to process. The problem is that such
procedures can only be performed in time one after another, leading to an
inflexible procedural view of mathematics. Such procedural learning may
work at one level in routine examples, but it produces an escalating degree
of difficulty at successive stages because it is more difficult to co-ordinate
processes than manipulate concepts. The failing student fails because he or
she is doing a different kind of mathematics which is harder than the flexible
thinking of the successful mathematician.

THE TRANSITION TO FORMAL MATHEMATICS

Students usually find formal mathematics in conflict with their experience.
It is no longer about procepts — symbols representing a process to be com-
puted or manipulated to give a result. The concepts in formal mathematics are
no longer related so directly to objects in the real world. Instead the mathemat-
ics has been systematised (a la Bourbaki) and presented as a polished theory in
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which mathematical concepts are defined as mental objects having certain min-
imal fundamental properties and all other properties are deduced from this. The
definitions are often complex linguistic statements involving several quantifiers.

This formal meaning is difficult to attain. For instance, of a group of
mathematics education students studying analysis as “an essential part of their
education”, none could give the definition of the convergence of a sequence
after two weeks of using the idea in lectures. Of course these students are not
the “best” students studying analysis, but their failure is typical of a spectrum
of levels of failure in understanding mathematical analysis. Even distinguished
mathematicians remember their struggles with the subject :

... I was a student, sometimes pretty good and sometimes less good.
Symbols didn’t bother me. I could juggle them quite well... [but] I was
stumped by the infinitesimal subtlety of epsilonic analysis. I could read
analytic proofs, remember them if I made an effort, and reproduce
them, sort of, but I didn’t really know what was going on.

(Halmos, 1985, p. 47)

Halmos was fortunate enough to eventually find out what the ‘real knowing’

was all about:

.. one afternoon something happened. I remember standing at the
blackboard in Room 213 of the mathematics building talking with
Warren Ambrose and suddenly I understood epsilon. I understood what
limits were, and all of that stuff that people were drilling in me became
clear. I sat down that afternoon with the calculus textbook by Granville,
Smith, and Longley. All of that stuff that previously had not made any
sense became obvious...

(Halmos in Albers & Alexanderson, 1985, p. 123)

Regrettably many students never reach enlightenment. Although visual
images may suggest theorems, the use of definitions demands a new form
of compression of knowledge. The definitions used in mathematics must be
written so that the information may be scanned to allow different parts to
become the focus of attention at different levels. For instance, the definition
of continuity is heard as:

For any ay in the domain of the function eff, given an epsilon
greater than zero, there exists a delta greater than zero such that if ex
lies in the domain of eff and the absolute value of ex minus ay is less
than delta then the absolute value of eff of ex minus eff of ay is less
than epsilon.

It is far too long to be held meaningfully in the focus of attention through
hearing alone. It only begins to make sense when compressed in symbolic
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writing concentrating first on continuity at a point a € D :

A function f: D — R is continuous at a € D if:

Ve >0, 36 >0 such that x € D, |x—al| < ¢ implies |f(x) —fla)| < e.

Then various parts can be scanned and chunked together :
Ve>0,40>0

such that |[x € D,|x—a|< §| implies ||f(x)—fla)|<e

This may be focused at one level as

For all € > 0, there is a 6 > 0 such that |an implication is satisfied | ,

or at another as

For all € > 0, thereisa 6 >0

such that ||one condition| implies |another

It is possible to concentrate on part of the sentence, such as

x€D,|x—a|<d|,

to interpret what it means, in this case, “x lies in D (which means that f(x)
is defined) and the distance between x and a is less than 6.” In this way we
may use the written word to scan the information linearly or non-linearly, or
focus on important chunks of information to build up the conceptual structure
and relationships between the parts.

In a pilot study I interviewed mathematics majors at a university with a high
reputation for pure mathematics, and found a wide difference in performance
between the unsuccessful for whom the theory made no sense at all and the
successful who understood the logical necessity of proof. But even the most
able student interviewed did not always internalise the definition and operate
with its full meaning several weeks after it had been given and used continually
in the lectures. Others who were failing to use the definition went back to
their visual images of a continuous function as a “graph drawn without taking
the pencil off the paper” and performed thought experiments based on these
images. They considered the statement of the intermediate value theorem to be
simple and “obvious” but found the formal proof impossible to follow. Students
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such as these resort to damage limitation using rote-learning of procedures as
reported in another investigation :

...everyone 1s faced with courses whose purpose they have failed
to grasp, let alone their finer details. Faced with this problem, most
people set about finding typical questions and memorising the typical
answers. Many gain excellent marks in courses of which they have no
knowledge. (Second year university mathematics student)

What else can the failing student do ? As Freudenthal said succinctly :

... the only thing the pupil can do with the ready-made mathematics
which he is offered is to reproduce it. (Freudenthal, 1973, p. 117)

CAN WE TEACH STUDENTS TO “THINK MATHEMATICALLY” ?

Can we encourage students to think like mathematicians ? Even though we
may not make every student a budding research mathematician, can we not
alter attitudes and methods of doing mathematics that fosters a creative way
of learning ?

If students are given a suitable environment to relax and think about
problems of an appropriate level, then such aspirations prove to be easy to
attain. Typical problems (to be found in Thinking Mathematically, Mason et
al., 1982) include :

e If a square is cut into regions by straight lines, how many colours are
needed so that no two adjoining regions are painted the same colour ?

e Into how many squares can one cut a square ?

These problems, on the face of it fairly easy, prove to be challenging,
especially when proof is required — for instance proving that it is not possible
to cut a square into two, three, or five squares. The latter statement proves to
be true under certain circumstances, but false under others. I will not spoil it
by refining the conditions on the problem, except to say that the alternative
solution was given by a thirteen year old girl in a master class, when it had
not occurred to me or to several hundred mathematics undergraduates over a
decade of problem-solving classes.

Reflective thinking in mathematics is built up by Mason et al., following
the How To Solve It approach of Polya (1945), but made more student-friendly
by breaking problem-solving into three phases. The first is an entry phase in
which the student must focus on the nature of the problem by asking “what
do I want”, reflect on any knowledge that may be available to begin the attack
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(“what do I know”) and then think “what can I introduce” to move from what
is known to what is wanted. The second phase is an atfack which occurs
when sufficient information is at hand to start to make the connections, and
leads either to a dead-end, or to an insight which moves the problem on. The
“dead-end” is seen as a valuable state because at least one method tried has
not worked and by returning to the entry phase and re-assessing the position
a new attack may ensue. If an insight occurs which may appear to solve
the problem, then the third review phase needs to be undertaken, checking
the method carefully, reflecting on how it was achieved and storing away
strategies for future problems, then considering how to extend the problem
in new ways. Whatever level of student participating in such a course, be it
with children in school or final year mathematics students, the result appears
always to be the same — a release from the routines of learning mathematics
to pass examinations and a new spirit of adventure and confidence bred from
success.

Yudariah Binte Mohammad Yusof worked with me as I taught the course
on one occasion and she developed attitudinal questionnaires to ask students
their opinions about mathematics and problem-solving. She then taught the
course herself at another university and questioned 44 of her students before
and after the course and then six months later during which time they took
regular mathematics courses again (Mohd Yusof & Tall, 1994, 1995). She
also showed the questionnaires to 22 lecturers who taught the students various
courses and asked them “How do you expect a typical student to respond ?”,
then “How would you prefer the students to respond ?”

In almost every case the change in student response from before to after the
problem-solving course proved to be in the same direction as the change from
what the lecturers expected to what they preferred. Thus the problem-solving
caused an attitudinal change in the students in the direction desired by the
lecturers. However, in almost every case, during the regular mathematics the
students’ attitudes turned back again towards what the lecturers expected and
away from what they desired.

Some students appreciated that their knowledge in problem solving helped
them to learn mathematics and solve problems more effectively :

The problem solving techniques help me come to terms with
the abstract nature of the maths I am doing. I try to connect the
[mathematical] ideas together and talk about it with my friends. It is
not that easy though. But I felt all the effort worth it when I am able
to do so. (Male industrial science student, majoring in mathematics)
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But a considerable minority (14 out of 44, that is 32%) reported that
the mathematics they were being taught did not allow them to think in a
problem-solving manner :

Since following the course I know mathematics is about solving
problems. But whatever mathematics [ am doing now doesn’t allow me
to do all those things. They are just more things to be remembered.

(Male computer education student)

I believed mathematics is useful in that it helps me to think. Having
said that it is hard to say how I can do this with the maths I am doing.
Most of the questions given can be solved by applying directly the
procedures we had just learned. There is nothing to think about.

(Female industrial science student majoring in mathematics)

So what does this tell us? One interpretation may be that the problem-
solving had relatively easy problems that allowed the students to ‘“think
mathematically” but that “serious” mathematics is demanding.

Evidence from another source suggests that more open methods can work
in analysis courses. In an experiment in Grenoble, large classes of analysis
students were encouraged to work in groups in the lecture hall to propose
theorems which they and other students subjected to a process of either proof
or refutation by counter-example. A small minority said they preferred being
told how to do mathematics in lecture classes, but 80% said they preferred
the exploratory form of learning (Alibert, 1988; Alibert & Thomas, 1991).

It seems to me more likely that, because we fear failure in our students, we
resort to the methods that “seem” necessary throughout mathematics. When
students are likely to fail, we lack the faith in their ability to think for
themselves and fell them how to do the mathematics in an organised way.
The result is that they behave as we expect, rather than as we might prefer
— they learn the material to pass the exam.

REFLECTIONS ON MATHEMATICAL THINKING

Currently the university mathematics community is under some stress
because it earns part of its finance from teaching undergraduates and all
is not well. In the UK the London Mathematical Society produced a report
which changed the British undergraduate degree structure to allow for four
years instead of the traditional three. Yet when I asked the LMS to change my
area of research interest to “Advanced Mathematical Thinking”, the committee
reluctantly refused because it was not an accepted heading in the American
Mathematical Society’s listing of topics. A formal request passed to the AMS
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through the Committee for Undergraduate Mathematics Education (CRUME)
was also rejected.

Writing recently in the Bulletin of the American Mathematical Society,
Thurston remarked :

Mathematicians have developed habits of communication that are
often dysfunctional.

and he went on to intimate how so many mathematicians fail to communicate in
research colloquia through using highly technical language without explanation
or motivation for non-experts. He continued by noting a similar problem in
teaching :
...in classrooms... we go through the motions of saying for the
record what we think the student “ought” to learn, while the students
are trying to grapple with the more fundamental issues of learning
our language and guessing at our mental models. Books compensate
by giving samples of how to solve every type of homework problem.
Professors compensate by giving homework and tests that are much
easier than the material “covered” in the course, and then grading
the homework and tests on a scale that requires little understanding.
We assume that the problem is with the students rather than with the
communication : that the students either just don’t have what it takes,
or else just don’t care. Qutsiders are amazed at this phenomenon, but

within the mathematical community, we dismiss it with shrugs.
(Thurston, 1994, p. 166)

I cannot believe that mathematicians can continue to ignore the study of
mathematical thinking as part of the totality of the profession, for if it is
not done by mathematicians, others surely lack the mathematical knowledge
to research it in depth. I suggest that the study of mathematical thinking be
given a place in the canons of mathematical activity comparable with other
areas of mathematics. Just as a topologist will defend a number-theorist’s right
to do research within the umbrella of mathematics I hope that specialists in
mathematical research will similarly defend the right of mathematicians to
do research into mathematical thinking. Respect will have to be earned by
mathematics educators. But if opportunities to earn respect are not honoured
then mathematics itself can only be the poorer.
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